Open3D (C++ API)  0.18.0
IoUImpl.h
Go to the documentation of this file.
1 // ----------------------------------------------------------------------------
2 // - Open3D: www.open3d.org -
3 // ----------------------------------------------------------------------------
4 // Copyright (c) 2018-2023 www.open3d.org
5 // SPDX-License-Identifier: MIT
6 // ----------------------------------------------------------------------------
7 
8 #pragma once
9 
10 #include <math.h>
11 
12 #include "open3d/Macro.h"
13 #include "open3d/core/CUDAUtils.h"
14 
15 namespace open3d {
16 namespace ml {
17 namespace contrib {
18 
19 constexpr int NMS_BLOCK_SIZE = sizeof(uint64_t) * 8;
20 constexpr float EPS = static_cast<float>(1e-8);
21 
22 struct Point {
24  OPEN3D_HOST_DEVICE Point(float x, float y) : x_(x), y_(y) {}
25  OPEN3D_HOST_DEVICE void set(float x, float y) {
26  x_ = x;
27  y_ = y;
28  }
30  return Point(x_ + b.x_, y_ + b.y_);
31  }
33  return Point(x_ - b.x_, y_ - b.y_);
34  }
35  float x_ = 0.0f;
36  float y_ = 0.0f;
37 };
38 
39 OPEN3D_HOST_DEVICE inline float Cross(const Point &a, const Point &b) {
40  return a.x_ * b.y_ - a.y_ * b.x_;
41 }
42 
43 OPEN3D_HOST_DEVICE inline float Cross(const Point &p1,
44  const Point &p2,
45  const Point &p0) {
46  return (p1.x_ - p0.x_) * (p2.y_ - p0.y_) -
47  (p2.x_ - p0.x_) * (p1.y_ - p0.y_);
48 }
49 
51  const Point &p2,
52  const Point &q1,
53  const Point &q2) {
54  int ret = fmin(p1.x_, p2.x_) <= fmax(q1.x_, q2.x_) &&
55  fmin(q1.x_, q2.x_) <= fmax(p1.x_, p2.x_) &&
56  fmin(p1.y_, p2.y_) <= fmax(q1.y_, q2.y_) &&
57  fmin(q1.y_, q2.y_) <= fmax(p1.y_, p2.y_);
58  return ret;
59 }
60 
61 OPEN3D_HOST_DEVICE inline int CheckInBox2D(const float *box, const Point &p) {
62  // box (5): [x1, y1, x2, y2, angle].
63  const float MARGIN = static_cast<float>(1e-5);
64 
65  float center_x = (box[0] + box[2]) / 2;
66  float center_y = (box[1] + box[3]) / 2;
67  // Rotate the point in the opposite direction of box.
68  float angle_cos = cos(-box[4]), angle_sin = sin(-box[4]);
69  float rot_x = (p.x_ - center_x) * angle_cos +
70  (p.y_ - center_y) * angle_sin + center_x;
71  float rot_y = -(p.x_ - center_x) * angle_sin +
72  (p.y_ - center_y) * angle_cos + center_y;
73  return (rot_x > box[0] - MARGIN && rot_x < box[2] + MARGIN &&
74  rot_y > box[1] - MARGIN && rot_y < box[3] + MARGIN);
75 }
76 
77 OPEN3D_HOST_DEVICE inline int Intersection(const Point &p1,
78  const Point &p0,
79  const Point &q1,
80  const Point &q0,
81  Point &ans) {
82  // Fast exclusion.
83  if (CheckRectCross(p0, p1, q0, q1) == 0) return 0;
84 
85  // Check Cross standing
86  float s1 = Cross(q0, p1, p0);
87  float s2 = Cross(p1, q1, p0);
88  float s3 = Cross(p0, q1, q0);
89  float s4 = Cross(q1, p1, q0);
90 
91  if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0;
92 
93  // Calculate Intersection of two lines.
94  float s5 = Cross(q1, p1, p0);
95  if (fabs(s5 - s1) > EPS) {
96  ans.x_ = (s5 * q0.x_ - s1 * q1.x_) / (s5 - s1);
97  ans.y_ = (s5 * q0.y_ - s1 * q1.y_) / (s5 - s1);
98 
99  } else {
100  float a0 = p0.y_ - p1.y_, b0 = p1.x_ - p0.x_,
101  c0 = p0.x_ * p1.y_ - p1.x_ * p0.y_;
102  float a1 = q0.y_ - q1.y_, b1 = q1.x_ - q0.x_,
103  c1 = q0.x_ * q1.y_ - q1.x_ * q0.y_;
104  float D = a0 * b1 - a1 * b0;
105 
106  ans.x_ = (b0 * c1 - b1 * c0) / D;
107  ans.y_ = (a1 * c0 - a0 * c1) / D;
108  }
109 
110  return 1;
111 }
112 
113 OPEN3D_HOST_DEVICE inline void RotateAroundCenter(const Point &center,
114  const float angle_cos,
115  const float angle_sin,
116  Point &p) {
117  float new_x = (p.x_ - center.x_) * angle_cos +
118  (p.y_ - center.y_) * angle_sin + center.x_;
119  float new_y = -(p.x_ - center.x_) * angle_sin +
120  (p.y_ - center.y_) * angle_cos + center.y_;
121  p.set(new_x, new_y);
122 }
123 
124 OPEN3D_HOST_DEVICE inline int PointCmp(const Point &a,
125  const Point &b,
126  const Point &center) {
127  return atan2(a.y_ - center.y_, a.x_ - center.x_) >
128  atan2(b.y_ - center.y_, b.x_ - center.x_);
129 }
130 
131 OPEN3D_HOST_DEVICE inline float BoxOverlap(const float *box_a,
132  const float *box_b) {
133  // box_a (5) [x1, y1, x2, y2, angle].
134  // box_b (5) [x1, y1, x2, y2, angle].
135  float a_x1 = box_a[0], a_y1 = box_a[1], a_x2 = box_a[2], a_y2 = box_a[3],
136  a_angle = box_a[4];
137  float b_x1 = box_b[0], b_y1 = box_b[1], b_x2 = box_b[2], b_y2 = box_b[3],
138  b_angle = box_b[4];
139 
140  Point center_a((a_x1 + a_x2) / 2, (a_y1 + a_y2) / 2);
141  Point center_b((b_x1 + b_x2) / 2, (b_y1 + b_y2) / 2);
142 
143  Point box_a_corners[5];
144  box_a_corners[0].set(a_x1, a_y1);
145  box_a_corners[1].set(a_x2, a_y1);
146  box_a_corners[2].set(a_x2, a_y2);
147  box_a_corners[3].set(a_x1, a_y2);
148 
149  Point box_b_corners[5];
150  box_b_corners[0].set(b_x1, b_y1);
151  box_b_corners[1].set(b_x2, b_y1);
152  box_b_corners[2].set(b_x2, b_y2);
153  box_b_corners[3].set(b_x1, b_y2);
154 
155  // Get oriented corners.
156  float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
157  float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
158 
159  for (int k = 0; k < 4; k++) {
160  RotateAroundCenter(center_a, a_angle_cos, a_angle_sin,
161  box_a_corners[k]);
162  RotateAroundCenter(center_b, b_angle_cos, b_angle_sin,
163  box_b_corners[k]);
164  }
165 
166  box_a_corners[4] = box_a_corners[0];
167  box_b_corners[4] = box_b_corners[0];
168 
169  // Get Intersection of lines.
170  Point cross_points[16];
171  Point poly_center;
172  int cnt = 0, flag = 0;
173 
174  poly_center.set(0, 0);
175  for (int i = 0; i < 4; i++) {
176  for (int j = 0; j < 4; j++) {
177  flag = Intersection(box_a_corners[i + 1], box_a_corners[i],
178  box_b_corners[j + 1], box_b_corners[j],
179  cross_points[cnt]);
180  if (flag) {
181  poly_center = poly_center + cross_points[cnt];
182  cnt++;
183  }
184  }
185  }
186 
187  // Check corners.
188  for (int k = 0; k < 4; k++) {
189  if (CheckInBox2D(box_a, box_b_corners[k])) {
190  poly_center = poly_center + box_b_corners[k];
191  cross_points[cnt] = box_b_corners[k];
192  cnt++;
193  }
194  if (CheckInBox2D(box_b, box_a_corners[k])) {
195  poly_center = poly_center + box_a_corners[k];
196  cross_points[cnt] = box_a_corners[k];
197  cnt++;
198  }
199  }
200 
201  OPEN3D_ASSERT(cnt != 0 && "Invalid value: cnt==0.");
202 
203  poly_center.x_ /= cnt;
204  poly_center.y_ /= cnt;
205 
206  // Sort the points of polygon.
207  Point temp;
208  for (int j = 0; j < cnt - 1; j++) {
209  for (int i = 0; i < cnt - j - 1; i++) {
210  if (PointCmp(cross_points[i], cross_points[i + 1], poly_center)) {
211  temp = cross_points[i];
212  cross_points[i] = cross_points[i + 1];
213  cross_points[i + 1] = temp;
214  }
215  }
216  }
217 
218  // Get the overlap areas.
219  float area = 0;
220  for (int k = 0; k < cnt - 1; k++) {
221  area += Cross(cross_points[k] - cross_points[0],
222  cross_points[k + 1] - cross_points[0]);
223  }
224 
225  return static_cast<float>(fabs(area)) / 2.0f;
226 }
227 
230  const float *box_a,
231  const float *box_b,
232  bool intersection_only = false) {
233  // params: box_a (5) [x1, y1, x2, y2, angle].
234  // params: box_b (5) [x1, y1, x2, y2, angle].
235  float sa = (box_a[2] - box_a[0]) * (box_a[3] - box_a[1]);
236  float sb = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1]);
237  float s_overlap = BoxOverlap(box_a, box_b);
238  if (intersection_only) {
239  return s_overlap;
240  } else {
241  return s_overlap / fmaxf(sa + sb - s_overlap, EPS);
242  }
243 }
244 
247  const float *box_a,
248  const float *box_b,
249  bool intersection_only = false) {
250  float box_a_new[5];
251  box_a_new[0] = box_a[0] - box_a[2] / 2;
252  box_a_new[1] = box_a[1] - box_a[3] / 2;
253  box_a_new[2] = box_a[0] + box_a[2] / 2;
254  box_a_new[3] = box_a[1] + box_a[3] / 2;
255  box_a_new[4] = box_a[4];
256 
257  float box_b_new[5];
258  box_b_new[0] = box_b[0] - box_b[2] / 2;
259  box_b_new[1] = box_b[1] - box_b[3] / 2;
260  box_b_new[2] = box_b[0] + box_b[2] / 2;
261  box_b_new[3] = box_b[1] + box_b[3] / 2;
262  box_b_new[4] = box_b[4];
263  return IoUBev2DWithMinAndMax(box_a_new, box_b_new, intersection_only);
264 }
265 
267 OPEN3D_HOST_DEVICE inline float IoU3DWithCenterAndSize(const float *box_a,
268  const float *box_b) {
269  float box_a_2d[5];
270  box_a_2d[0] = box_a[0];
271  box_a_2d[1] = box_a[2];
272  box_a_2d[2] = box_a[3];
273  box_a_2d[3] = box_a[5];
274  box_a_2d[4] = box_a[6];
275 
276  float box_b_2d[5];
277  box_b_2d[0] = box_b[0];
278  box_b_2d[1] = box_b[2];
279  box_b_2d[2] = box_b[3];
280  box_b_2d[3] = box_b[5];
281  box_b_2d[4] = box_b[6];
282  float intersection_2d = IoUBev2DWithCenterAndSize(box_a_2d, box_b_2d, true);
283 
284  float y_a_min = box_a[1] - box_a[4];
285  float y_a_max = box_a[1];
286  float y_b_min = box_b[1] - box_b[4];
287  float y_b_max = box_b[1];
288  float iw = (y_a_max < y_b_max ? y_a_max : y_b_max) -
289  (y_a_min > y_b_min ? y_a_min : y_b_min);
290  float iou_3d = 0;
291  if (iw > 0) {
292  float intersection_3d = intersection_2d * iw;
293  float volume_a = box_a[3] * box_a[4] * box_a[5];
294  float volume_b = box_b[3] * box_b[4] * box_b[5];
295  float union_3d = volume_a + volume_b - intersection_3d;
296  iou_3d = intersection_3d / union_3d;
297  }
298  return iou_3d;
299 }
300 
301 } // namespace contrib
302 } // namespace ml
303 } // namespace open3d
Common CUDA utilities.
#define OPEN3D_HOST_DEVICE
Definition: CUDAUtils.h:44
#define OPEN3D_ASSERT(...)
Definition: Macro.h:48
double area
Definition: PointCloudPlanarPatchDetection.cpp:508
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample uint64_t
Definition: K4aPlugin.cpp:343
constexpr int NMS_BLOCK_SIZE
Definition: IoUImpl.h:19
OPEN3D_HOST_DEVICE float BoxOverlap(const float *box_a, const float *box_b)
Definition: IoUImpl.h:131
OPEN3D_HOST_DEVICE int Intersection(const Point &p1, const Point &p0, const Point &q1, const Point &q0, Point &ans)
Definition: IoUImpl.h:77
constexpr float EPS
Definition: IoUImpl.h:20
OPEN3D_HOST_DEVICE void RotateAroundCenter(const Point &center, const float angle_cos, const float angle_sin, Point &p)
Definition: IoUImpl.h:113
OPEN3D_HOST_DEVICE int CheckRectCross(const Point &p1, const Point &p2, const Point &q1, const Point &q2)
Definition: IoUImpl.h:50
OPEN3D_HOST_DEVICE int PointCmp(const Point &a, const Point &b, const Point &center)
Definition: IoUImpl.h:124
OPEN3D_HOST_DEVICE float Cross(const Point &a, const Point &b)
Definition: IoUImpl.h:39
OPEN3D_HOST_DEVICE float IoUBev2DWithCenterAndSize(const float *box_a, const float *box_b, bool intersection_only=false)
(x_center, z_center, x_size, z_size, y_rotate)
Definition: IoUImpl.h:246
OPEN3D_HOST_DEVICE int CheckInBox2D(const float *box, const Point &p)
Definition: IoUImpl.h:61
OPEN3D_HOST_DEVICE float IoUBev2DWithMinAndMax(const float *box_a, const float *box_b, bool intersection_only=false)
(x_min, z_min, x_max, z_max, y_rotate)
Definition: IoUImpl.h:229
OPEN3D_HOST_DEVICE float IoU3DWithCenterAndSize(const float *box_a, const float *box_b)
(x_center, y_max, z_center, x_size, y_size, z_size, y_rotate)
Definition: IoUImpl.h:267
Definition: PinholeCameraIntrinsic.cpp:16
Definition: IoUImpl.h:22
OPEN3D_HOST_DEVICE Point operator+(const Point &b) const
Definition: IoUImpl.h:29
OPEN3D_HOST_DEVICE Point operator-(const Point &b) const
Definition: IoUImpl.h:32
float x_
Definition: IoUImpl.h:35
float y_
Definition: IoUImpl.h:36
OPEN3D_HOST_DEVICE Point()
Definition: IoUImpl.h:23
OPEN3D_HOST_DEVICE void set(float x, float y)
Definition: IoUImpl.h:25
OPEN3D_HOST_DEVICE Point(float x, float y)
Definition: IoUImpl.h:24