open3d.ml.torch.models.KPFCNN¶
-
class
open3d.ml.torch.models.
KPFCNN
(name='KPFCNN', lbl_values=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], num_classes=19, ignored_label_inds=[0], ckpt_path=None, batcher='ConcatBatcher', architecture=['simple', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary'], in_radius=4.0, max_in_points=100000, batch_num=8, batch_limit=30000, val_batch_num=8, num_kernel_points=15, first_subsampling_dl=0.06, conv_radius=2.5, deform_radius=6.0, KP_extent=1.2, KP_influence='linear', aggregation_mode='sum', first_features_dim=128, in_features_dim=2, modulated=False, use_batch_norm=True, batch_norm_momentum=0.02, deform_fitting_mode='point2point', deform_fitting_power=1.0, repulse_extent=1.2, augment_scale_anisotropic=True, augment_symmetries=[True, False, False], augment_rotation='vertical', augment_scale_min=0.8, augment_scale_max=1.2, augment_noise=0.001, augment_color=0.8, in_points_dim=3, fixed_kernel_points='center', num_layers=5, l_relu=0.1, reduce_fc=False, **kwargs)¶ Class defining KPFCNN.
A model for Semantic Segmentation.
-
__init__
(name='KPFCNN', lbl_values=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], num_classes=19, ignored_label_inds=[0], ckpt_path=None, batcher='ConcatBatcher', architecture=['simple', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary'], in_radius=4.0, max_in_points=100000, batch_num=8, batch_limit=30000, val_batch_num=8, num_kernel_points=15, first_subsampling_dl=0.06, conv_radius=2.5, deform_radius=6.0, KP_extent=1.2, KP_influence='linear', aggregation_mode='sum', first_features_dim=128, in_features_dim=2, modulated=False, use_batch_norm=True, batch_norm_momentum=0.02, deform_fitting_mode='point2point', deform_fitting_power=1.0, repulse_extent=1.2, augment_scale_anisotropic=True, augment_symmetries=[True, False, False], augment_rotation='vertical', augment_scale_min=0.8, augment_scale_max=1.2, augment_noise=0.001, augment_color=0.8, in_points_dim=3, fixed_kernel_points='center', num_layers=5, l_relu=0.1, reduce_fc=False, **kwargs)¶ Initialize.
- Parameters
cfg (cfg object or str) – cfg object or path to cfg file
dataset_path (str) – path to the dataset
**kwargs (dict) – Dict of args
-
augmentation_transform
(points, normals=None, verbose=False, is_test=False)¶ Implementation of an augmentation transform for point clouds.
-
big_neighborhood_filter
(neighbors, layer)¶ Filter neighborhoods with max number of neighbors.
Limit is set to keep XX% of the neighborhoods untouched. Limit is computed at initialization
-
forward
(batch)¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
get_loss
(Loss, results, inputs, device)¶ Runs the loss on outputs of the model.
- Parameters
outputs – logits
labels – labels
- Returns
loss
-
get_optimizer
(cfg_pipeline)¶ Returns an optimizer object for the model.
- Parameters
cfg_pipeline – A Config object with the configuration of the pipeline.
- Returns
Returns a new optimizer object.
-
inference_begin
(data)¶ Function called right before running inference.
- Parameters
data – A data from the dataset.
-
inference_end
(inputs, results)¶ This function is called after the inference.
This function can be implemented to apply post-processing on the network outputs.
- Parameters
results – The model outputs as returned by the call() function. Post-processing is applied on this object.
- Returns
Returns True if the inference is complete and otherwise False. Returning False can be used to implement inference for large point clouds which require multiple passes.
-
inference_preprocess
()¶ This function prepares the inputs for the model.
- Returns
The inputs to be consumed by the call() function of the model.
-
preprocess
(data, attr)¶ Data preprocessing function.
This function is called before training to preprocess the data from a dataset.
- Parameters
data – A sample from the dataset.
attr – The corresponding attributes.
- Returns
Returns the preprocessed data
-
transform
(data, attr, is_test=False)¶ Transform function for the point cloud and features.
- Parameters
cfg_pipeline – config file for pipeline.
-
update_probs
(inputs, results, test_probs, test_labels)¶
-
training
: bool¶
-