open3d.ml.torch.pipelines.ObjectDetection¶
-
class
open3d.ml.torch.pipelines.
ObjectDetection
(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)¶ Pipeline for object detection.
-
__init__
(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)¶ Initialize.
- Parameters
model – A network model.
dataset – A dataset, or None for inference model.
device – ‘gpu’ or ‘cpu’.
kwargs –
- Returns
The corresponding class.
- Return type
class
-
get_3d_summary
(infer_bboxes_batch, inputs_batch, epoch, results=None, save_gt=True)¶ Create visualization for input point cloud and network output bounding boxes.
- Parameters
infer_bboxes_batch (Sequence[Sequence[BoundingBox3D]) – Batch of predicted bounding boxes from inference_end()
(Sequence[Sequence[bbox_objs (inputs_batch) – Object3D, point: array(N,3)]]): Batch of ground truth boxes and pointclouds.
epoch (int) – step
results (torch.FloatTensor) – Model output (only required for RPN stage of PointRCNN).
save_gt (bool) – Save ground truth (for ‘train’ or ‘valid’ stages).
- Returns
- [Dict] visualizations of inputs and outputs suitable to save as an
Open3D for TensorBoard summary.
-
load_ckpt
(ckpt_path=None, is_resume=True)¶
-
run_inference
(data)¶ Run inference on given data.
- Parameters
data – A raw data.
- Returns
Returns the inference results.
-
run_test
()¶ Run test with test data split, computes mean average precision of the prediction results.
-
run_train
()¶ Run training with train data split.
-
run_valid
(epoch=0)¶ Run validation with validation data split, computes mean average precision and the loss of the prediction results.
- Parameters
epoch (int) – step for TensorBoard summary. Defaults to 0 if unspecified.
-
save_ckpt
(epoch)¶
-
save_config
(writer)¶ Save experiment configuration with tensorboard summary.
-
save_logs
(writer, epoch)¶
-