Point Cloud¶
point_cloud_bounding_box.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import open3d as o3d if __name__ == "__main__": sample_ply_data = o3d.data.PLYPointCloud() pcd = o3d.io.read_point_cloud(sample_ply_data.path) # Flip it, otherwise the pointcloud will be upside down. pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) print(pcd) axis_aligned_bounding_box = pcd.get_axis_aligned_bounding_box() axis_aligned_bounding_box.color = (1, 0, 0) oriented_bounding_box = pcd.get_oriented_bounding_box() oriented_bounding_box.color = (0, 1, 0) print( "Displaying axis_aligned_bounding_box in red and oriented bounding box in green ..." ) o3d.visualization.draw( [pcd, axis_aligned_bounding_box, oriented_bounding_box]) |
point_cloud_convex_hull.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import open3d as o3d if __name__ == "__main__": print("Displaying pointcloud with convex hull ...") bunny = o3d.data.BunnyMesh() mesh = o3d.io.read_triangle_mesh(bunny.path) mesh.compute_vertex_normals() pcl = mesh.sample_points_poisson_disk(number_of_points=10000) hull, _ = pcl.compute_convex_hull() hull_ls = o3d.geometry.LineSet.create_from_triangle_mesh(hull) hull_ls.paint_uniform_color((1, 0, 0)) o3d.visualization.draw([pcl, hull_ls]) |
point_cloud_crop.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import open3d as o3d if __name__ == "__main__": print("Load a ply point cloud, crop it, and render it") sample_ply_data = o3d.data.DemoCropPointCloud() pcd = o3d.io.read_point_cloud(sample_ply_data.point_cloud_path) vol = o3d.visualization.read_selection_polygon_volume( sample_ply_data.cropped_json_path) chair = vol.crop_point_cloud(pcd) # Flip the pointclouds, otherwise they will be upside down. pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) chair.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) print("Displaying original pointcloud ...") o3d.visualization.draw([pcd]) print("Displaying cropped pointcloud") o3d.visualization.draw([chair]) |
point_cloud_dbscan_clustering.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import open3d as o3d import numpy as np import matplotlib.pyplot as plt if __name__ == "__main__": sample_ply_data = o3d.data.PLYPointCloud() pcd = o3d.io.read_point_cloud(sample_ply_data.path) # Flip it, otherwise the pointcloud will be upside down. pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) with o3d.utility.VerbosityContextManager( o3d.utility.VerbosityLevel.Debug) as cm: labels = np.array( pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True)) max_label = labels.max() print(f"point cloud has {max_label + 1} clusters") colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1)) colors[labels < 0] = 0 pcd.colors = o3d.utility.Vector3dVector(colors[:, :3]) o3d.visualization.draw([pcd]) |
point_cloud_distance.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import open3d as o3d import numpy as np if __name__ == "__main__": sample_ply_data = o3d.data.DemoCropPointCloud() pcd = o3d.io.read_point_cloud(sample_ply_data.point_cloud_path) vol = o3d.visualization.read_selection_polygon_volume( sample_ply_data.cropped_json_path) chair = vol.crop_point_cloud(pcd) chair.paint_uniform_color([0, 0, 1]) pcd.paint_uniform_color([1, 0, 0]) print("Displaying the two point clouds used for calculating distance ...") o3d.visualization.draw([pcd, chair]) dists = pcd.compute_point_cloud_distance(chair) dists = np.asarray(dists) print("Printing average distance between the two point clouds ...") print(dists) |
point_cloud_farthest_point_sampling.py¶
27 28 29 30 31 32 33 34 35 36 37 38 | import open3d as o3d if __name__ == "__main__": # Load bunny data. bunny = o3d.data.BunnyMesh() pcd = o3d.io.read_point_cloud(bunny.path) pcd.paint_uniform_color([0.5, 0.5, 0.5]) # Get 1000 samples from original point cloud and paint to green. pcd_down = pcd.farthest_point_down_sample(1000) pcd_down.paint_uniform_color([0, 1, 0]) o3d.visualization.draw_geometries([pcd, pcd_down]) |
point_cloud_iss_keypoint_detector.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import open3d as o3d import time if __name__ == "__main__": # Compute ISS Keypoints on armadillo pointcloud. armadillo_data = o3d.data.ArmadilloMesh() mesh = o3d.io.read_triangle_mesh(armadillo_data.path) pcd = o3d.geometry.PointCloud() pcd.points = mesh.vertices tic = time.time() keypoints = o3d.geometry.keypoint.compute_iss_keypoints(pcd) toc = 1000 * (time.time() - tic) print("ISS Computation took {:.0f} [ms]".format(toc)) mesh.compute_vertex_normals() mesh.paint_uniform_color([0.5, 0.5, 0.5]) keypoints.paint_uniform_color([1.0, 0.0, 0.0]) o3d.visualization.draw([keypoints, mesh], point_size=5) |
point_cloud_normal_estimation.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | import open3d as o3d import numpy as np if __name__ == "__main__": bunny = o3d.data.BunnyMesh() gt_mesh = o3d.io.read_triangle_mesh(bunny.path) gt_mesh.compute_vertex_normals() pcd = gt_mesh.sample_points_poisson_disk(5000) # Invalidate existing normals. pcd.normals = o3d.utility.Vector3dVector(np.zeros((1, 3))) print("Displaying input pointcloud ...") o3d.visualization.draw_geometries([pcd], point_show_normal=True) pcd.estimate_normals() print("Displaying pointcloud with normals ...") o3d.visualization.draw_geometries([pcd], point_show_normal=True) print("Printing the normal vectors ...") print(np.asarray(pcd.normals)) |
point_cloud_outlier_removal_radius.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | import open3d as o3d import numpy as np def display_inlier_outlier(cloud, ind): inlier_cloud = cloud.select_by_index(ind) outlier_cloud = cloud.select_by_index(ind, invert=True) print("Showing outliers (red) and inliers (gray): ") outlier_cloud.paint_uniform_color([1, 0, 0]) inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8]) o3d.visualization.draw([inlier_cloud, outlier_cloud]) if __name__ == "__main__": ptcloud_data = o3d.data.PLYPointCloud() print("Load a ply point cloud, print it, and render it") pcd = o3d.io.read_point_cloud(ptcloud_data.path) R = pcd.get_rotation_matrix_from_xyz((np.pi, 0, 0)) pcd.rotate(R, center=(0, 0, 0)) o3d.visualization.draw([pcd]) print("Downsample the point cloud with a voxel of 0.02") voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.02) o3d.visualization.draw([voxel_down_pcd]) print("Radius oulier removal") cl, ind = voxel_down_pcd.remove_radius_outlier(nb_points=16, radius=0.05) display_inlier_outlier(voxel_down_pcd, ind) |
point_cloud_outlier_removal_statistical.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | import open3d as o3d import numpy as np def display_inlier_outlier(cloud, ind): inlier_cloud = cloud.select_by_index(ind) outlier_cloud = cloud.select_by_index(ind, invert=True) print("Showing outliers (red) and inliers (gray): ") outlier_cloud.paint_uniform_color([1, 0, 0]) inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8]) o3d.visualization.draw([inlier_cloud, outlier_cloud]) if __name__ == "__main__": ptcloud_data = o3d.data.PLYPointCloud() print("Load a ply point cloud, print it, and render it") pcd = o3d.io.read_point_cloud(ptcloud_data.path) R = pcd.get_rotation_matrix_from_xyz((np.pi, 0, 0)) pcd.rotate(R, center=(0, 0, 0)) o3d.visualization.draw([pcd]) print("Downsample the point cloud with a voxel of 0.02") voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.02) o3d.visualization.draw([voxel_down_pcd]) print("Statistical oulier removal") cl, ind = voxel_down_pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) display_inlier_outlier(voxel_down_pcd, ind) |
point_cloud_paint.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 | import open3d as o3d if __name__ == "__main__": print("Load a ply point cloud, print it, and render it") sample_ply_data = o3d.data.PLYPointCloud() pcd = o3d.io.read_point_cloud(sample_ply_data.path) # Flip it, otherwise the pointcloud will be upside down. pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) print(pcd) o3d.visualization.draw([pcd]) print("Paint pointcloud") pcd.paint_uniform_color([1, 0.706, 0]) o3d.visualization.draw([pcd]) |
point_cloud_plane_segmentation.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import open3d as o3d if __name__ == "__main__": sample_pcd_data = o3d.data.PCDPointCloud() pcd = o3d.io.read_point_cloud(sample_pcd_data.path) # Flip it, otherwise the pointcloud will be upside down. pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000) [a, b, c, d] = plane_model print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0") print("Displaying pointcloud with planar points in red ...") inlier_cloud = pcd.select_by_index(inliers) inlier_cloud.paint_uniform_color([1.0, 0, 0]) outlier_cloud = pcd.select_by_index(inliers, invert=True) o3d.visualization.draw([inlier_cloud, outlier_cloud]) |
point_cloud_to_depth.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import open3d as o3d import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': tum_data = o3d.data.SampleTUMRGBDImage() depth = o3d.t.io.read_image(tum_data.depth_path) intrinsic = o3d.core.Tensor([[535.4, 0, 320.1], [0, 539.2, 247.6], [0, 0, 1]]) pcd = o3d.t.geometry.PointCloud.create_from_depth_image(depth, intrinsic, depth_scale=5000.0, depth_max=10.0) o3d.visualization.draw([pcd]) depth_reproj = pcd.project_to_depth_image(640, 480, intrinsic, depth_scale=5000.0, depth_max=10.0) fig, axs = plt.subplots(1, 2) axs[0].imshow(np.asarray(depth.to_legacy())) axs[1].imshow(np.asarray(depth_reproj.to_legacy())) plt.show() |
point_cloud_to_rgbd.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | import open3d as o3d import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': device = o3d.core.Device('CPU:0') tum_data = o3d.data.SampleTUMRGBDImage() depth = o3d.t.io.read_image(tum_data.depth_path).to(device) color = o3d.t.io.read_image(tum_data.color_path).to(device) intrinsic = o3d.core.Tensor([[535.4, 0, 320.1], [0, 539.2, 247.6], [0, 0, 1]]) rgbd = o3d.t.geometry.RGBDImage(color, depth) pcd = o3d.t.geometry.PointCloud.create_from_rgbd_image(rgbd, intrinsic, depth_scale=5000.0, depth_max=10.0) o3d.visualization.draw([pcd]) rgbd_reproj = pcd.project_to_rgbd_image(640, 480, intrinsic, depth_scale=5000.0, depth_max=10.0) fig, axs = plt.subplots(1, 2) axs[0].imshow(np.asarray(rgbd_reproj.color.to_legacy())) axs[1].imshow(np.asarray(rgbd_reproj.depth.to_legacy())) plt.show() |
point_cloud_transformation.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | import open3d as o3d import numpy as np import copy def translate(): armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(5000) pcd_tx = copy.deepcopy(pcd).translate((150, 0, 0)) pcd_ty = copy.deepcopy(pcd).translate((0, 200, 0)) print('Displaying original and translated geometries ...') o3d.visualization.draw([{ "name": "Original Geometry", "geometry": pcd }, { "name": "Translated (in X) Geometry", "geometry": pcd_tx }, { "name": "Translated (in Y) Geometry", "geometry": pcd_ty }], show_ui=True) def rotate(): armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(5000) pcd_r = copy.deepcopy(pcd).translate((200, 0, 0)) R = pcd.get_rotation_matrix_from_xyz((np.pi / 2, 0, np.pi / 4)) pcd_r.rotate(R) print('Displaying original and rotated geometries ...') o3d.visualization.draw([{ "name": "Original Geometry", "geometry": pcd }, { "name": "Rotated Geometry", "geometry": pcd_r }], show_ui=True) def scale(): armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(5000) pcd_s = copy.deepcopy(pcd).translate((200, 0, 0)) pcd_s.scale(0.5, center=pcd_s.get_center()) print('Displaying original and scaled geometries ...') o3d.visualization.draw([{ "name": "Original Geometry", "geometry": pcd }, { "name": "Scaled Geometry", "geometry": pcd_s }], show_ui=True) def transform(): armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(5000) T = np.eye(4) T[:3, :3] = pcd.get_rotation_matrix_from_xyz((0, np.pi / 3, np.pi / 2)) T[0, 3] = 150 T[1, 3] = 200 print(T) pcd_t = copy.deepcopy(pcd).transform(T) print('Displaying original and transformed geometries ...') o3d.visualization.draw([{ "name": "Original Geometry", "geometry": pcd }, { "name": "Transformed Geometry", "geometry": pcd_t }], show_ui=True) if __name__ == "__main__": translate() rotate() scale() transform() |
point_cloud_voxel_downsampling.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 | import open3d as o3d if __name__ == "__main__": print("Load a ply point cloud, print it, and render it") sample_ply_data = o3d.data.PLYPointCloud() pcd = o3d.io.read_point_cloud(sample_ply_data.path) # Flip it, otherwise the pointcloud will be upside down. pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) print(pcd) o3d.visualization.draw([pcd]) print("Downsample the point cloud with a voxel of 0.05") downpcd = pcd.voxel_down_sample(voxel_size=0.05) o3d.visualization.draw([downpcd]) |
point_cloud_with_numpy.py¶
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | import open3d as o3d import numpy as np if __name__ == "__main__": # Generate some n x 3 matrix using a variant of sync function. x = np.linspace(-3, 3, 201) mesh_x, mesh_y = np.meshgrid(x, x) z = np.sinc((np.power(mesh_x, 2) + np.power(mesh_y, 2))) z_norm = (z - z.min()) / (z.max() - z.min()) xyz = np.zeros((np.size(mesh_x), 3)) xyz[:, 0] = np.reshape(mesh_x, -1) xyz[:, 1] = np.reshape(mesh_y, -1) xyz[:, 2] = np.reshape(z_norm, -1) print("Printing numpy array used to make Open3D pointcloud ...") print(xyz) # Pass xyz to Open3D.o3d.geometry.PointCloud and visualize. pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(xyz) # Add color and estimate normals for better visualization. pcd.paint_uniform_color([0.5, 0.5, 0.5]) pcd.estimate_normals() pcd.orient_normals_consistent_tangent_plane(1) print("Displaying Open3D pointcloud made using numpy array ...") o3d.visualization.draw([pcd]) # Convert Open3D.o3d.geometry.PointCloud to numpy array. xyz_converted = np.asarray(pcd.points) print("Printing numpy array made using Open3D pointcloud ...") print(xyz_converted) |