|
OdometryResult | open3d::t::pipelines::odometry::RGBDOdometryMultiScalePointToPlane (const RGBDImage &source, const RGBDImage &target, const Tensor &intrinsics, const Tensor &trans, const float depth_scale, const float depth_max, const std::vector< OdometryConvergenceCriteria > &criteria, const OdometryLossParams ¶ms) |
|
OdometryResult | open3d::t::pipelines::odometry::RGBDOdometryMultiScaleIntensity (const RGBDImage &source, const RGBDImage &target, const Tensor &intrinsic, const Tensor &trans, const float depth_scale, const float depth_max, const std::vector< OdometryConvergenceCriteria > &criteria, const OdometryLossParams ¶ms) |
|
OdometryResult | open3d::t::pipelines::odometry::RGBDOdometryMultiScaleHybrid (const RGBDImage &source, const RGBDImage &target, const Tensor &intrinsics, const Tensor &trans, const float depth_scale, const float depth_max, const std::vector< OdometryConvergenceCriteria > &criteria, const OdometryLossParams ¶ms) |
|
OdometryResult | open3d::t::pipelines::odometry::RGBDOdometryMultiScale (const t::geometry::RGBDImage &source, const t::geometry::RGBDImage &target, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target=core::Tensor::Eye(4, core::Float64, core::Device("CPU:0")), const float depth_scale=1000.0f, const float depth_max=3.0f, const std::vector< OdometryConvergenceCriteria > &criteria_list={10, 5, 3}, const Method method=Method::Hybrid, const OdometryLossParams ¶ms=OdometryLossParams()) |
| Create an RGBD image pyramid given the original source and target RGBD images, and perform hierarchical odometry using specified method . Can be used for offline odometry where we do not expect to push performance to the extreme and not reuse vertex/normal map computed before. Input RGBD images hold a depth image (UInt16 or Float32) with a scale factor and a color image (UInt8 x 3). More...
|
|
OdometryResult | open3d::t::pipelines::odometry::ComputeOdometryResultPointToPlane (const core::Tensor &source_vertex_map, const core::Tensor &target_vertex_map, const core::Tensor &target_normal_map, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target, const float depth_outlier_trunc, const float depth_huber_delta) |
| Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function \([(V_p - V_q)^T N_p]^2\), where \( V_p \) denotes the vertex at pixel p in the source, \( V_q \) denotes the vertex at pixel q in the target, \( N_p \) denotes the normal at pixel p in the source. q is obtained by transforming p with init_source_to_target then projecting with intrinsics . KinectFusion, ISMAR 2011. More...
|
|
OdometryResult | open3d::t::pipelines::odometry::ComputeOdometryResultIntensity (const core::Tensor &source_depth, const core::Tensor &target_depth, const core::Tensor &source_intensity, const core::Tensor &target_intensity, const core::Tensor &target_intensity_dx, const core::Tensor &target_intensity_dy, const core::Tensor &source_vertex_map, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target, const float depth_outlier_trunc, const float intensity_huber_delta) |
| Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function \((I_p - I_q)^2\), where \( I_p \) denotes the intensity at pixel p in the source, \( I_q \) denotes the intensity at pixel q in the target. q is obtained by transforming p with init_source_to_target then projecting with intrinsics . Real-time visual odometry from dense RGB-D images, ICCV Workshops, 2011. More...
|
|
OdometryResult | open3d::t::pipelines::odometry::ComputeOdometryResultHybrid (const core::Tensor &source_depth, const core::Tensor &target_depth, const core::Tensor &source_intensity, const core::Tensor &target_intensity, const core::Tensor &target_depth_dx, const core::Tensor &target_depth_dy, const core::Tensor &target_intensity_dx, const core::Tensor &target_intensity_dy, const core::Tensor &source_vertex_map, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target, const float depth_outlier_trunc, const float depth_huber_delta, const float intensity_huber_delta) |
| Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function \((I_p - I_q)^2 + \lambda(D_p - (D_q)')^2\), where \( I_p \) denotes the intensity at pixel p in the source, \( I_q \) denotes the intensity at pixel q in the target. \( D_p \) denotes the depth pixel p in the source, \( D_q \) denotes the depth pixel q in the target. q is obtained by transforming p with init_source_to_target then projecting with intrinsics . Reference: J. Park, Q.Y. Zhou, and V. Koltun, Colored Point Cloud Registration Revisited, ICCV, 2017. More...
|
|
core::Tensor | open3d::t::pipelines::odometry::ComputeOdometryInformationMatrix (const geometry::Image &source_depth, const geometry::Image &target_depth, const core::Tensor &intrinsic, const core::Tensor &source_to_target, const float dist_thr, const float depth_scale, const float depth_max) |
|