Redwood datasetΒΆ

This tutorial reads and visualizes an RGBDImage from the Redwood dataset [Choi2015].

 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# examples/Python/Tutorial/Basic/rgbd_redwood.py

from open3d import *
import matplotlib.pyplot as plt


if __name__ == "__main__":
    print("Read Redwood dataset")
    color_raw = read_image("../../TestData/RGBD/color/00000.jpg")
    depth_raw = read_image("../../TestData/RGBD/depth/00000.png")
    rgbd_image = create_rgbd_image_from_color_and_depth(
        color_raw, depth_raw);
    print(rgbd_image)
    plt.subplot(1, 2, 1)
    plt.title('Redwood grayscale image')
    plt.imshow(rgbd_image.color)
    plt.subplot(1, 2, 2)
    plt.title('Redwood depth image')
    plt.imshow(rgbd_image.depth)
    plt.show()
    pcd = create_point_cloud_from_rgbd_image(rgbd_image, PinholeCameraIntrinsic(
            PinholeCameraIntrinsicParameters.PrimeSenseDefault))
    # Flip it, otherwise the pointcloud will be upside down
    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
    draw_geometries([pcd])

The Redwood format stored depth in a 16-bit single channel image. The integer value represents the depth measurement in millimeters. It is the default format for Open3D to parse depth images.

12
13
14
15
16
17
    print("Read Redwood dataset")
    color_raw = read_image("../../TestData/RGBD/color/00000.jpg")
    depth_raw = read_image("../../TestData/RGBD/depth/00000.png")
    rgbd_image = create_rgbd_image_from_color_and_depth(
        color_raw, depth_raw);
    print(rgbd_image)

The default conversion function create_rgbd_image_from_color_and_depth creates an RGBDImage from a pair of color and depth image. The color image is converted into a grayscale image, stored in float ranged in [0, 1]. The depth image is stored in float, representing the depth value in meters. print(rgbd_image) yields:

RGBDImage of size
Color image : 640x480, with 1 channels.
Depth image : 640x480, with 1 channels.
Use numpy.asarray to access buffer data.

The converted images can be rendered as numpy arrays.

18
19
20
21
22
23
24
    plt.subplot(1, 2, 1)
    plt.title('Redwood grayscale image')
    plt.imshow(rgbd_image.color)
    plt.subplot(1, 2, 2)
    plt.title('Redwood depth image')
    plt.imshow(rgbd_image.depth)
    plt.show()

Outputs:

../../../_images/redwood_rgbd1.png

The RGBD image can be converted into a point cloud, given a set of camera parameters.

25
26
27
28
29
    pcd = create_point_cloud_from_rgbd_image(rgbd_image, PinholeCameraIntrinsic(
            PinholeCameraIntrinsicParameters.PrimeSenseDefault))
    # Flip it, otherwise the pointcloud will be upside down
    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
    draw_geometries([pcd])

Here we use PinholeCameraIntrinsicParameters.PrimeSenseDefault as default camera parameter. It has image resolution 640x480, focal length (fx, fy) = (525.0, 525.0), and optical center (cx, cy) = (319.5, 239.5). An identity matrix is used as the default extrinsic parameter. pcd.transform applies an up-down flip transformation on the point cloud for better visualization purpose. This outputs:

../../../_images/redwood_pcd1.png