open3d.ml.tf.models.KPFCNN¶
-
class
open3d.ml.tf.models.
KPFCNN
(*args, **kwargs)¶ Class defining KPFCNN.
A model for Semantic Segmentation.
-
__init__
(name='KPFCNN', lbl_values=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], num_classes=19, ignored_label_inds=[0], ckpt_path=None, batcher='ConcatBatcher', architecture=['simple', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'resnetb', 'resnetb_strided', 'resnetb', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary', 'nearest_upsample', 'unary'], in_radius=4.0, max_in_points=100000, batch_num=8, batch_limit=30000, val_batch_num=8, num_kernel_points=15, first_subsampling_dl=0.06, conv_radius=2.5, deform_radius=6.0, KP_extent=1.2, KP_influence='linear', aggregation_mode='sum', density_parameter=5.0, first_features_dim=128, in_features_dim=2, modulated=False, use_batch_norm=True, batch_norm_momentum=0.02, deform_fitting_mode='point2point', deform_fitting_power=1.0, repulse_extent=1.2, augment_scale_anisotropic=True, augment_symmetries=[True, False, False], augment_rotation='vertical', augment_scale_min=0.8, augment_scale_max=1.2, augment_noise=0.001, augment_color=0.8, in_points_dim=3, fixed_kernel_points='center', num_layers=5, l_relu=0.1, reduce_fc=False, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
augment_input
(stacked_points, batch_inds, is_test)¶
-
big_neighborhood_filter
(neighbors, layer)¶ Filter neighborhoods with max number of neighbors.
Limit is set to keep XX% of the neighborhoods untouched. Limit is computed at initialization
-
call
(flat_inputs, training=False)¶ Calls the model on new inputs.
In this case call just reapplies all ops in the graph to the new inputs (e.g. build a new computational graph from the provided inputs).
Note: This method should not be called directly. It is only meant to be overridden when subclassing tf.keras.Model. To call a model on an input, always use the __call__ method, i.e. model(inputs), which relies on the underlying call method.
- Parameters
inputs – A tensor or list of tensors.
training – Boolean or boolean scalar tensor, indicating whether to run the Network in training mode or inference mode.
mask – A mask or list of masks. A mask can be either a tensor or None (no mask).
- Returns
A tensor if there is a single output, or a list of tensors if there are more than one outputs.
-
get_batch_gen
(dataset, steps_per_epoch=None, batch_size=1)¶
-
get_batch_inds
(stacks_len)¶ Method computing the batch indices of all points, given the batch element sizes (stack lengths).
Example: From [3, 2, 5], it would return [0, 0, 0, 1, 1, 2, 2, 2, 2, 2]
-
get_loss
(Loss, logits, inputs)¶ Runs the loss on outputs of the model.
- Parameters
outputs – logits
labels – labels
- Returns
loss
-
get_optimizer
(cfg_pipeline)¶ Returns an optimizer object for the model.
- Parameters
cfg_pipeline – A Config object with the configuration of the pipeline.
- Returns
Returns a new optimizer object.
-
inference_begin
(data)¶ Function called right before running inference.
- Parameters
data – A data from the dataset.
-
inference_end
(results)¶ This function is called after the inference.
This function can be implemented to apply post-processing on the network outputs.
- Parameters
results – The model outputs as returned by the call() function. Post-processing is applied on this object.
- Returns
Returns True if the inference is complete and otherwise False. Returning False can be used to implement inference for large point clouds which require multiple passes.
-
inference_preprocess
()¶ This function prepares the inputs for the model.
- Returns
The inputs to be consumed by the call() function of the model.
-
organise_inputs
(flat_inputs)¶
-
preprocess
(data, attr)¶ Data preprocessing function.
This function is called before training to preprocess the data from a dataset.
- Parameters
data – A sample from the dataset.
attr – The corresponding attributes.
- Returns
Returns the preprocessed data
-
segmentation_inputs
(stacked_points, stacked_features, point_labels, stacks_lengths, batch_inds, object_labels=None)¶
-
stack_batch_inds
(stacks_len)¶
-
transform
(stacked_points, stacked_colors, point_labels, stacks_lengths, point_inds, cloud_inds, is_test=False)¶ [None, 3], [None, 3], [None], [None]
-
transform_inference
(data)¶
-