open3d.ml.tf.models.PVCNN¶
-
class
open3d.ml.tf.models.
PVCNN
(*args, **kwargs)¶ Semantic Segmentation model. Based on Point Voxel Convolutions. https://arxiv.org/abs/1907.03739
Uses PointNet architecture with separate Point and Voxel processing.
-
name
¶ Name of model. Default to “PVCNN”.
-
num_classes
¶ Number of classes.
-
num_points
¶ Number of points to sample per pointcloud.
-
extra_feature_channels
¶ Number of extra features. Default to 6 (RGB + Coordinate norms).
-
batcher
¶ Batching method for dataloader.
-
augment
¶ dictionary for augmentation.
-
__init__
(name='PVCNN', device='cuda', num_classes=13, num_points=40960, extra_feature_channels=6, width_multiplier=1, voxel_resolution_multiplier=1, batcher='DefaultBatcher', augment=None, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
call
(inputs, training=False)¶ Forward pass for the model.
- Parameters
inputs – A dict object for inputs with following keys
point (tf.float32) – Input pointcloud (B, N,3)
feat (tf.float32) – Input features (B, N, 9)
training (bool) – Whether model is in training phase.
- Returns
probability distribution (B, N, C).
- Return type
tf.float32
-
get_batch_gen
(dataset, steps_per_epoch=None, batch_size=1)¶
-
get_loss
(sem_seg_loss, results, inputs)¶ Calculate the loss on output of the model.
-
Loss
¶ Object of type SemSegLoss.
-
results
¶ Output of the model.
-
inputs
¶ Input of the model.
-
device
¶ device(cpu or cuda).
- Returns
Returns loss, labels and scores.
-
-
get_optimizer
(cfg_pipeline)¶ Returns an optimizer object for the model.
- Parameters
cfg_pipeline – A Config object with the configuration of the pipeline.
- Returns
Returns a new optimizer object.
-
inference_begin
(data)¶ Function called right before running inference.
- Parameters
data – A data from the dataset.
-
inference_end
(inputs, results)¶ This function is called after the inference.
This function can be implemented to apply post-processing on the network outputs.
- Parameters
results – The model outputs as returned by the call() function. Post-processing is applied on this object.
- Returns
Returns True if the inference is complete and otherwise False. Returning False can be used to implement inference for large point clouds which require multiple passes.
-
inference_preprocess
()¶ This function prepares the inputs for the model.
- Returns
The inputs to be consumed by the call() function of the model.
-
preprocess
(data, attr)¶ Data preprocessing function.
This function is called before training to preprocess the data from a dataset. It consists of subsampling and normalizing the pointcloud and creating new features.
- Parameters
data – A sample from the dataset.
attr – The corresponding attributes.
- Returns
Returns the preprocessed data
-
transform
(points, feat, labels)¶ Transform function for the point cloud and features.
This function is called after preprocess method by dataset generator. It consists of mapping data to dict.
- Parameters
points – Input pointcloud.
feat – Input features.
labels – Input labels.
- Returns
Returns dictionary data with keys (point, feat, label).
-
blocks
= ((64, 1, 32), (64, 2, 16), (128, 1, 16), (1024, 1, None))¶
-