Octree¶
octree_find_leaf.py¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # ---------------------------------------------------------------------------- # - Open3D: www.open3d.org - # ---------------------------------------------------------------------------- # Copyright (c) 2018-2023 www.open3d.org # SPDX-License-Identifier: MIT # ---------------------------------------------------------------------------- import open3d as o3d import numpy as np if __name__ == "__main__": N = 2000 armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(N) # Fit to unit cube. pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center()) pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0, 1, size=(N, 3))) octree = o3d.geometry.Octree(max_depth=4) octree.convert_from_point_cloud(pcd, size_expand=0.01) print('Displaying input octree ...') o3d.visualization.draw([octree]) print('Finding leaf node containing the first point of pointcloud ...') print(octree.locate_leaf_node(pcd.points[0])) |
octree_from_voxel_grid.py¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # ---------------------------------------------------------------------------- # - Open3D: www.open3d.org - # ---------------------------------------------------------------------------- # Copyright (c) 2018-2023 www.open3d.org # SPDX-License-Identifier: MIT # ---------------------------------------------------------------------------- import open3d as o3d import numpy as np if __name__ == "__main__": N = 2000 armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(N) # Fit to unit cube. pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center()) pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0, 1, size=(N, 3))) print('Displaying input voxel grid ...') voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.05) o3d.visualization.draw([voxel_grid]) octree = o3d.geometry.Octree(max_depth=4) octree.create_from_voxel_grid(voxel_grid) print('Displaying octree ..') o3d.visualization.draw([octree]) |
octree_point_cloud.py¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # ---------------------------------------------------------------------------- # - Open3D: www.open3d.org - # ---------------------------------------------------------------------------- # Copyright (c) 2018-2023 www.open3d.org # SPDX-License-Identifier: MIT # ---------------------------------------------------------------------------- import open3d as o3d import numpy as np if __name__ == "__main__": N = 2000 armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(N) # Fit to unit cube. pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center()) pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0, 1, size=(N, 3))) print('Displaying input pointcloud ...') o3d.visualization.draw([pcd]) octree = o3d.geometry.Octree(max_depth=4) octree.convert_from_point_cloud(pcd, size_expand=0.01) print('Displaying octree ..') o3d.visualization.draw([octree]) |
octree_traversal.py¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | # ---------------------------------------------------------------------------- # - Open3D: www.open3d.org - # ---------------------------------------------------------------------------- # Copyright (c) 2018-2023 www.open3d.org # SPDX-License-Identifier: MIT # ---------------------------------------------------------------------------- import open3d as o3d import numpy as np def f_traverse(node, node_info): early_stop = False if isinstance(node, o3d.geometry.OctreeInternalNode): if isinstance(node, o3d.geometry.OctreeInternalPointNode): n = 0 for child in node.children: if child is not None: n += 1 print( "{}{}: Internal node at depth {} has {} children and {} points ({})" .format(' ' * node_info.depth, node_info.child_index, node_info.depth, n, len(node.indices), node_info.origin)) # We only want to process nodes / spatial regions with enough points. early_stop = len(node.indices) < 250 elif isinstance(node, o3d.geometry.OctreeLeafNode): if isinstance(node, o3d.geometry.OctreePointColorLeafNode): print("{}{}: Leaf node at depth {} has {} points with origin {}". format(' ' * node_info.depth, node_info.child_index, node_info.depth, len(node.indices), node_info.origin)) else: raise NotImplementedError('Node type not recognized!') # Early stopping: if True, traversal of children of the current node will be skipped. return early_stop if __name__ == "__main__": N = 2000 armadillo_data = o3d.data.ArmadilloMesh() pcd = o3d.io.read_triangle_mesh( armadillo_data.path).sample_points_poisson_disk(N) # Fit to unit cube. pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center()) pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0, 1, size=(N, 3))) octree = o3d.geometry.Octree(max_depth=4) octree.convert_from_point_cloud(pcd, size_expand=0.01) print('Displaying input octree ...') o3d.visualization.draw([octree]) print('Traversing octree ...') octree.traverse(f_traverse) |