Voxel Grid

voxel_grid_carving.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2023 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------

import open3d as o3d
import numpy as np


def xyz_spherical(xyz):
    x = xyz[0]
    y = xyz[1]
    z = xyz[2]
    r = np.sqrt(x * x + y * y + z * z)
    r_x = np.arccos(y / r)
    r_y = np.arctan2(z, x)
    return [r, r_x, r_y]


def get_rotation_matrix(r_x, r_y):
    rot_x = np.asarray([[1, 0, 0], [0, np.cos(r_x), -np.sin(r_x)],
                        [0, np.sin(r_x), np.cos(r_x)]])
    rot_y = np.asarray([[np.cos(r_y), 0, np.sin(r_y)], [0, 1, 0],
                        [-np.sin(r_y), 0, np.cos(r_y)]])
    return rot_y.dot(rot_x)


def get_extrinsic(xyz):
    rvec = xyz_spherical(xyz)
    r = get_rotation_matrix(rvec[1], rvec[2])
    t = np.asarray([0, 0, 2]).transpose()
    trans = np.eye(4)
    trans[:3, :3] = r
    trans[:3, 3] = t
    return trans


def preprocess(model):
    min_bound = model.get_min_bound()
    max_bound = model.get_max_bound()
    center = min_bound + (max_bound - min_bound) / 2.0
    scale = np.linalg.norm(max_bound - min_bound) / 2.0
    vertices = np.asarray(model.vertices)
    vertices -= center
    model.vertices = o3d.utility.Vector3dVector(vertices / scale)
    return model


def voxel_carving(mesh, cubic_size, voxel_resolution, w=300, h=300):
    mesh.compute_vertex_normals()
    camera_sphere = o3d.geometry.TriangleMesh.create_sphere(radius=1.0,
                                                            resolution=10)

    # Setup dense voxel grid.
    voxel_carving = o3d.geometry.VoxelGrid.create_dense(
        width=cubic_size,
        height=cubic_size,
        depth=cubic_size,
        voxel_size=cubic_size / voxel_resolution,
        origin=[-cubic_size / 2.0, -cubic_size / 2.0, -cubic_size / 2.0],
        color=[1.0, 0.7, 0.0])

    # Rescale geometry.
    camera_sphere = preprocess(camera_sphere)
    mesh = preprocess(mesh)

    # Setup visualizer to render depthmaps.
    vis = o3d.visualization.Visualizer()
    vis.create_window(width=w, height=h, visible=False)
    vis.add_geometry(mesh)
    vis.get_render_option().mesh_show_back_face = True
    ctr = vis.get_view_control()
    param = ctr.convert_to_pinhole_camera_parameters()

    # Carve voxel grid.
    centers_pts = np.zeros((len(camera_sphere.vertices), 3))
    for cid, xyz in enumerate(camera_sphere.vertices):
        # Get new camera pose.
        trans = get_extrinsic(xyz)
        param.extrinsic = trans
        c = np.linalg.inv(trans).dot(np.asarray([0, 0, 0, 1]).transpose())
        centers_pts[cid, :] = c[:3]
        ctr.convert_from_pinhole_camera_parameters(param)

        # Capture depth image and make a point cloud.
        vis.poll_events()
        vis.update_renderer()
        depth = vis.capture_depth_float_buffer(False)

        # Depth map carving method.
        voxel_carving.carve_depth_map(o3d.geometry.Image(depth), param)
        print("Carve view %03d/%03d" % (cid + 1, len(camera_sphere.vertices)))
    vis.destroy_window()

    return voxel_carving


if __name__ == "__main__":

    armadillo_data = o3d.data.ArmadilloMesh()
    mesh = o3d.io.read_triangle_mesh(armadillo_data.path)
    cubic_size = 2.0
    voxel_resolution = 128.0

    carved_voxels = voxel_carving(mesh, cubic_size, voxel_resolution)
    print("Carved voxels ...")
    print(carved_voxels)
    o3d.visualization.draw([carved_voxels])

voxel_grid_from_point_cloud.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2023 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------

import open3d as o3d
import numpy as np

if __name__ == "__main__":

    N = 2000
    armadillo_data = o3d.data.ArmadilloMesh()
    pcd = o3d.io.read_triangle_mesh(
        armadillo_data.path).sample_points_poisson_disk(N)
    # Fit to unit cube.
    pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()),
              center=pcd.get_center())
    pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0, 1,
                                                              size=(N, 3)))
    print('Displaying input point cloud ...')
    o3d.visualization.draw([pcd])

    print('Displaying voxel grid ...')
    voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd,
                                                                voxel_size=0.05)
    o3d.visualization.draw([voxel_grid])

voxel_grid_from_triangle_mesh.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2023 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------

import open3d as o3d
import numpy as np

if __name__ == "__main__":
    bunny = o3d.data.BunnyMesh()
    mesh = o3d.io.read_triangle_mesh(bunny.path)
    mesh.compute_vertex_normals()

    # Fit to unit cube.
    mesh.scale(1 / np.max(mesh.get_max_bound() - mesh.get_min_bound()),
               center=mesh.get_center())
    print('Displaying input mesh ...')
    o3d.visualization.draw([mesh])

    voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh(
        mesh, voxel_size=0.05)
    print('Displaying voxel grid ...')
    o3d.visualization.draw([voxel_grid])