Register fragments¶
Once the fragments of the scene are created, the next step is to align them in a global space.
Input arguments¶
This script runs with python run_system.py [config] --register
. In [config]
, ["path_dataset"]
should have subfolders fragments which stores fragments in .ply files and a pose graph in a .json file.
The main function runs make_posegraph_for_scene
and optimize_posegraph_for_scene
. The first function performs pairwise registration. The second function performs multiway registration.
Preprocess point cloud¶
15 16 17 18 19 20 21 22 23 24 | # examples/Python/ReconstructionSystem/register_fragments.py
def preprocess_point_cloud(pcd, config):
voxel_size = config["voxel_size"]
pcd_down = voxel_down_sample(pcd, voxel_size)
estimate_normals(pcd_down,
KDTreeSearchParamHybrid(radius = voxel_size * 2.0, max_nn = 30))
pcd_fpfh = compute_fpfh_feature(pcd_down,
KDTreeSearchParamHybrid(radius = voxel_size * 5.0, max_nn = 100))
return (pcd_down, pcd_fpfh)
|
This function downsamples point cloud to make a point cloud sparser and regularly distributed. Normals and FPFH feature are precomputed. See Voxel downsampling, Vertex normal estimation, and Extract geometric feature for more details.
Compute initial registration¶
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | # examples/Python/ReconstructionSystem/register_fragments.py
def compute_initial_registration(s, t, source_down, target_down,
source_fpfh, target_fpfh, path_dataset, config):
if t == s + 1: # odometry case
print("Using RGBD odometry")
pose_graph_frag = read_pose_graph(join(path_dataset,
config["template_fragment_posegraph_optimized"] % s))
n_nodes = len(pose_graph_frag.nodes)
transformation_init = np.linalg.inv(
pose_graph_frag.nodes[n_nodes-1].pose)
(transformation, information) = \
multiscale_icp(source_down, target_down,
[config["voxel_size"]], [50], config, transformation_init)
else: # loop closure case
(success, transformation, information) = register_point_cloud_fpfh(
source_down, target_down,
source_fpfh, target_fpfh, config)
if not success:
print("No resonable solution. Skip this pair")
return (False, np.identity(4), np.zeros((6,6)))
print(transformation)
if config["debug_mode"]:
draw_registration_result(source_down, target_down,
transformation)
return (True, transformation, information)
|
This function computes a rough alignment between two fragments. If the fragments are neighboring fragments, the rough alignment is determined by an aggregating RGBD odometry obtained from Make fragments. Otherwise, register_point_cloud_fpfh
is called to perform global registration. Note that global registration is less reliable according to [Choi2015].
Pairwise global registration¶
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | # examples/Python/ReconstructionSystem/register_fragments.py
def register_point_cloud_fpfh(source, target,
source_fpfh, target_fpfh, config):
distance_threshold = config["voxel_size"] * 1.4
if config["global_registration"] == "fgr":
result = registration_fast_based_on_feature_matching(
source, target, source_fpfh, target_fpfh,
FastGlobalRegistrationOption(
maximum_correspondence_distance = distance_threshold))
if config["global_registration"] == "ransac":
result = registration_ransac_based_on_feature_matching(
source, target, source_fpfh, target_fpfh,
distance_threshold,
TransformationEstimationPointToPoint(False), 4,
[CorrespondenceCheckerBasedOnEdgeLength(0.9),
CorrespondenceCheckerBasedOnDistance(distance_threshold)],
RANSACConvergenceCriteria(4000000, 500))
if (result.transformation.trace() == 4.0):
return (False, np.identity(4), np.zeros((6,6)))
information = get_information_matrix_from_point_clouds(
source, target, distance_threshold, result.transformation)
if information[5,5] / min(len(source.points),len(target.points)) < 0.3:
return (False, np.identity(4), np.zeros((6,6)))
return (True, result.transformation, information)
|
This function uses RANSAC or Fast global registration for pairwise global registration.
Multiway registration¶
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | # examples/Python/ReconstructionSystem/register_fragments.py
def update_posegrph_for_scene(s, t, transformation, information,
odometry, pose_graph):
if t == s + 1: # odometry case
odometry = np.dot(transformation, odometry)
odometry_inv = np.linalg.inv(odometry)
pose_graph.nodes.append(PoseGraphNode(odometry_inv))
pose_graph.edges.append(
PoseGraphEdge(s, t, transformation,
information, uncertain = False))
else: # loop closure case
pose_graph.edges.append(
PoseGraphEdge(s, t, transformation,
information, uncertain = True))
return (odometry, pose_graph)
|
This script uses the technique demonstrated in Multiway registration. Function update_posegrph_for_scene
builds a pose graph for multiway registration of all fragments. Each graph node represents a fragments and its pose which transforms the geometry to the global space.
Once a pose graph is built, function optimize_posegraph_for_scene
is called for multiway registration.
39 40 41 42 43 44 45 46 47 48 | # examples/Python/ReconstructionSystem/optimize_posegraph.py
def optimize_posegraph_for_scene(path_dataset, config):
pose_graph_name = join(path_dataset, config["template_global_posegraph"])
pose_graph_optimized_name = join(path_dataset,
config["template_global_posegraph_optimized"])
run_posegraph_optimization(pose_graph_name, pose_graph_optimized_name,
max_correspondence_distance = config["voxel_size"] * 1.4,
preference_loop_closure = \
config["preference_loop_closure_registration"])
|
Main registration loop¶
The function make_posegraph_for_scene
below calls all the functions introduced above.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | # examples/Python/ReconstructionSystem/register_fragments.py
def make_posegraph_for_scene(ply_file_names, config):
pose_graph = PoseGraph()
odometry = np.identity(4)
pose_graph.nodes.append(PoseGraphNode(odometry))
n_files = len(ply_file_names)
matching_results = {}
for s in range(n_files):
for t in range(s + 1, n_files):
matching_results[s * n_files + t] = matching_result(s, t)
if config["python_multi_threading"]:
from joblib import Parallel, delayed
import multiprocessing
import subprocess
MAX_THREAD = min(multiprocessing.cpu_count(),
max(len(matching_results), 1))
results = Parallel(n_jobs=MAX_THREAD)(
delayed(register_point_cloud_pair)(ply_file_names,
matching_results[r].s, matching_results[r].t, config)
for r in matching_results)
for i, r in enumerate(matching_results):
matching_results[r].success = results[i][0]
matching_results[r].transformation = results[i][1]
matching_results[r].information = results[i][2]
else:
for r in matching_results:
(matching_results[r].success, matching_results[r].transformation,
matching_results[r].information) = \
register_point_cloud_pair(ply_file_names,
matching_results[r].s, matching_results[r].t, config)
for r in matching_results:
if matching_results[r].success:
(odometry, pose_graph) = update_posegrph_for_scene(
matching_results[r].s, matching_results[r].t,
matching_results[r].transformation,
matching_results[r].information,
odometry, pose_graph)
write_pose_graph(join(config["path_dataset"],
config["template_global_posegraph"]), pose_graph)
|
The main workflow is: pairwise global registration -> multiway registration.
Results¶
The following is messages from pose graph optimization.
[GlobalOptimizationLM] Optimizing PoseGraph having 14 nodes and 42 edges.
Line process weight : 55.885667
[Initial ] residual : 7.791139e+04, lambda : 1.205976e+00
[Iteration 00] residual : 6.094275e+02, valid edges : 22, time : 0.001 sec.
[Iteration 01] residual : 4.526879e+02, valid edges : 22, time : 0.000 sec.
[Iteration 02] residual : 4.515039e+02, valid edges : 22, time : 0.000 sec.
[Iteration 03] residual : 4.514832e+02, valid edges : 22, time : 0.000 sec.
[Iteration 04] residual : 4.514825e+02, valid edges : 22, time : 0.000 sec.
Current_residual - new_residual < 1.000000e-06 * current_residual
[GlobalOptimizationLM] total time : 0.003 sec.
[GlobalOptimizationLM] Optimizing PoseGraph having 14 nodes and 35 edges.
Line process weight : 60.762800
[Initial ] residual : 6.336097e+01, lambda : 1.324043e+00
[Iteration 00] residual : 6.334147e+01, valid edges : 22, time : 0.000 sec.
[Iteration 01] residual : 6.334138e+01, valid edges : 22, time : 0.000 sec.
Current_residual - new_residual < 1.000000e-06 * current_residual
[GlobalOptimizationLM] total time : 0.001 sec.
CompensateReferencePoseGraphNode : reference : 0
There are 14 fragments and 52 valid matching pairs between fragments. After 23 iteration, 11 edges are detected to be false positive. After they are pruned, pose graph optimization runs again to achieve tight alignment.