Open3D (C++ API)
0.19.0
|
Data Structures | |
class | OdometryConvergenceCriteria |
class | OdometryResult |
class | OdometryLossParams |
Enumerations | |
enum class | Method { PointToPlane , Intensity , Hybrid } |
Functions | |
OdometryResult | RGBDOdometryMultiScalePointToPlane (const RGBDImage &source, const RGBDImage &target, const Tensor &intrinsics, const Tensor &trans, const float depth_scale, const float depth_max, const std::vector< OdometryConvergenceCriteria > &criteria, const OdometryLossParams ¶ms) |
OdometryResult | RGBDOdometryMultiScaleIntensity (const RGBDImage &source, const RGBDImage &target, const Tensor &intrinsic, const Tensor &trans, const float depth_scale, const float depth_max, const std::vector< OdometryConvergenceCriteria > &criteria, const OdometryLossParams ¶ms) |
OdometryResult | RGBDOdometryMultiScaleHybrid (const RGBDImage &source, const RGBDImage &target, const Tensor &intrinsics, const Tensor &trans, const float depth_scale, const float depth_max, const std::vector< OdometryConvergenceCriteria > &criteria, const OdometryLossParams ¶ms) |
OdometryResult | RGBDOdometryMultiScale (const t::geometry::RGBDImage &source, const t::geometry::RGBDImage &target, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target=core::Tensor::Eye(4, core::Float64, core::Device("CPU:0")), const float depth_scale=1000.0f, const float depth_max=3.0f, const std::vector< OdometryConvergenceCriteria > &criteria_list={10, 5, 3}, const Method method=Method::Hybrid, const OdometryLossParams ¶ms=OdometryLossParams()) |
Create an RGBD image pyramid given the original source and target RGBD images, and perform hierarchical odometry using specified method . Can be used for offline odometry where we do not expect to push performance to the extreme and not reuse vertex/normal map computed before. Input RGBD images hold a depth image (UInt16 or Float32) with a scale factor and a color image (UInt8 x 3). More... | |
OdometryResult | ComputeOdometryResultPointToPlane (const core::Tensor &source_vertex_map, const core::Tensor &target_vertex_map, const core::Tensor &target_normal_map, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target, const float depth_outlier_trunc, const float depth_huber_delta) |
Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function [(V_p - V_q)^T N_p]^2, where V_p denotes the vertex at pixel p in the source, V_q denotes the vertex at pixel q in the target, N_p denotes the normal at pixel p in the source. q is obtained by transforming p with init_source_to_target then projecting with intrinsics . KinectFusion, ISMAR 2011. More... | |
OdometryResult | ComputeOdometryResultIntensity (const core::Tensor &source_depth, const core::Tensor &target_depth, const core::Tensor &source_intensity, const core::Tensor &target_intensity, const core::Tensor &target_intensity_dx, const core::Tensor &target_intensity_dy, const core::Tensor &source_vertex_map, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target, const float depth_outlier_trunc, const float intensity_huber_delta) |
Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function (I_p - I_q)^2, where I_p denotes the intensity at pixel p in the source, I_q denotes the intensity at pixel q in the target. q is obtained by transforming p with init_source_to_target then projecting with intrinsics . Real-time visual odometry from dense RGB-D images, ICCV Workshops, 2011. More... | |
OdometryResult | ComputeOdometryResultHybrid (const core::Tensor &source_depth, const core::Tensor &target_depth, const core::Tensor &source_intensity, const core::Tensor &target_intensity, const core::Tensor &target_depth_dx, const core::Tensor &target_depth_dy, const core::Tensor &target_intensity_dx, const core::Tensor &target_intensity_dy, const core::Tensor &source_vertex_map, const core::Tensor &intrinsics, const core::Tensor &init_source_to_target, const float depth_outlier_trunc, const float depth_huber_delta, const float intensity_huber_delta) |
Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function (I_p - I_q)^2 + \lambda(D_p - (D_q)')^2, where I_p denotes the intensity at pixel p in the source, I_q denotes the intensity at pixel q in the target. D_p denotes the depth pixel p in the source, D_q denotes the depth pixel q in the target. q is obtained by transforming p with init_source_to_target then projecting with intrinsics . Reference: J. Park, Q.Y. Zhou, and V. Koltun, Colored Point Cloud Registration Revisited, ICCV, 2017. More... | |
core::Tensor | ComputeOdometryInformationMatrix (const geometry::Image &source_depth, const geometry::Image &target_depth, const core::Tensor &intrinsic, const core::Tensor &source_to_target, const float dist_thr, const float depth_scale, const float depth_max) |
|
strong |
core::Tensor open3d::t::pipelines::odometry::ComputeOdometryInformationMatrix | ( | const geometry::Image & | source_depth, |
const geometry::Image & | target_depth, | ||
const core::Tensor & | intrinsic, | ||
const core::Tensor & | source_to_target, | ||
const float | dist_thr, | ||
const float | depth_scale = 1000.0f , |
||
const float | depth_max = 3.0f |
||
) |
Estimates 6x6 information matrix from a pair of depth images. The process is akin to information matrix creation for point clouds.
OdometryResult open3d::t::pipelines::odometry::ComputeOdometryResultHybrid | ( | const core::Tensor & | source_depth, |
const core::Tensor & | target_depth, | ||
const core::Tensor & | source_intensity, | ||
const core::Tensor & | target_intensity, | ||
const core::Tensor & | target_depth_dx, | ||
const core::Tensor & | target_depth_dy, | ||
const core::Tensor & | target_intensity_dx, | ||
const core::Tensor & | target_intensity_dy, | ||
const core::Tensor & | source_vertex_map, | ||
const core::Tensor & | intrinsics, | ||
const core::Tensor & | init_source_to_target, | ||
const float | depth_outlier_trunc, | ||
const float | depth_huber_delta, | ||
const float | intensity_huber_delta | ||
) |
Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function (I_p - I_q)^2 + \lambda(D_p - (D_q)')^2, where I_p denotes the intensity at pixel p in the source, I_q denotes the intensity at pixel q in the target. D_p denotes the depth pixel p in the source, D_q denotes the depth pixel q in the target. q is obtained by transforming p with init_source_to_target
then projecting with intrinsics
. Reference: J. Park, Q.Y. Zhou, and V. Koltun, Colored Point Cloud Registration Revisited, ICCV, 2017.
source_depth | (rows, cols, channels=1) Float32 source depth image obtained by PreprocessDepth before calling this function. |
target_depth | (rows, cols, channels=1) Float32 target depth image obtained by PreprocessDepth before calling this function. |
source_intensity | (rows, cols, channels=1) Float32 source intensity image obtained by RGBToGray before calling this function. |
target_intensity | (rows, cols, channels=1) Float32 target intensity image obtained by RGBToGray before calling this function. |
target_depth_dx | (rows, cols, channels=1) Float32 target depth gradient image along x-axis obtained by FilterSobel before calling this function. |
target_depth_dy | (rows, cols, channels=1) Float32 target depth gradient image along y-axis obtained by FilterSobel before calling this function. |
target_intensity_dx | (rows, cols, channels=1) Float32 target intensity gradient image along x-axis obtained by FilterSobel before calling this function. |
target_intensity_dy | (rows, cols, channels=1) Float32 target intensity gradient image along y-axis obtained by FilterSobel before calling this function. |
source_vertex_map | (rows, cols, channels=3) Float32 source vertex image obtained by CreateVertexMap before calling this function. |
intrinsics | (3, 3) intrinsic matrix for projection. |
init_source_to_target | (4, 4) initial transformation matrix from source to target. |
depth_outlier_trunc | Depth difference threshold used to filter projective associations. |
depth_huber_delta | Huber norm parameter used in depth loss. |
intensity_huber_delta | Huber norm parameter used in intensity loss. |
OdometryResult open3d::t::pipelines::odometry::ComputeOdometryResultIntensity | ( | const core::Tensor & | source_depth, |
const core::Tensor & | target_depth, | ||
const core::Tensor & | source_intensity, | ||
const core::Tensor & | target_intensity, | ||
const core::Tensor & | target_intensity_dx, | ||
const core::Tensor & | target_intensity_dy, | ||
const core::Tensor & | source_vertex_map, | ||
const core::Tensor & | intrinsics, | ||
const core::Tensor & | init_source_to_target, | ||
const float | depth_outlier_trunc, | ||
const float | intensity_huber_delta | ||
) |
Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function (I_p - I_q)^2, where I_p denotes the intensity at pixel p in the source, I_q denotes the intensity at pixel q in the target. q is obtained by transforming p with init_source_to_target
then projecting with intrinsics
. Real-time visual odometry from dense RGB-D images, ICCV Workshops, 2011.
source_depth | (rows, cols, channels=1) Float32 source depth image obtained by PreprocessDepth before calling this function. |
target_depth | (rows, cols, channels=1) Float32 target depth image obtained by PreprocessDepth before calling this function. |
source_intensity | (rows, cols, channels=1) Float32 source intensity image obtained by RGBToGray before calling this function. |
target_intensity | (rows, cols, channels=1) Float32 target intensity image obtained by RGBToGray before calling this function. |
target_intensity_dx | (rows, cols, channels=1) Float32 target intensity gradient image along x-axis obtained by FilterSobel before calling this function. |
target_intensity_dy | (rows, cols, channels=1) Float32 target intensity gradient image along y-axis obtained by FilterSobel before calling this function. |
source_vertex_map | (rows, cols, channels=3) Float32 source vertex image obtained by CreateVertexMap before calling this function. |
intrinsics | (3, 3) intrinsic matrix for projection. |
init_source_to_target | (4, 4) initial transformation matrix from source to target. |
depth_outlier_trunc | Depth difference threshold used to filter projective associations. |
intensity_huber_delta | Huber norm parameter used in intensity loss. |
OdometryResult open3d::t::pipelines::odometry::ComputeOdometryResultPointToPlane | ( | const core::Tensor & | source_vertex_map, |
const core::Tensor & | target_vertex_map, | ||
const core::Tensor & | target_normal_map, | ||
const core::Tensor & | intrinsics, | ||
const core::Tensor & | init_source_to_target, | ||
const float | depth_outlier_trunc, | ||
const float | depth_huber_delta | ||
) |
Estimates the 4x4 rigid transformation T from source to target, with inlier rmse and fitness. Performs one iteration of RGBD odometry using loss function [(V_p - V_q)^T N_p]^2, where V_p denotes the vertex at pixel p in the source, V_q denotes the vertex at pixel q in the target, N_p denotes the normal at pixel p in the source. q is obtained by transforming p with init_source_to_target
then projecting with intrinsics
. KinectFusion, ISMAR 2011.
source_vertex_map | (rows, cols, channels=3) Float32 source vertex image obtained by CreateVertexMap before calling this function. |
target_vertex_map | (rows, cols, channels=3) Float32 target vertex image obtained by CreateVertexMap before calling this function. |
target_normal_map | (rows, cols, channels=3) Float32 target normal image obtained by CreateNormalMap before calling this function. |
intrinsics | (3, 3) intrinsic matrix for projection. |
init_source_to_target | (4, 4) initial transformation matrix from source to target. |
depth_outlier_trunc | Depth difference threshold used to filter projective associations. |
depth_huber_delta | Huber norm parameter used in depth loss. |
OdometryResult open3d::t::pipelines::odometry::RGBDOdometryMultiScale | ( | const t::geometry::RGBDImage & | source, |
const t::geometry::RGBDImage & | target, | ||
const core::Tensor & | intrinsics, | ||
const core::Tensor & | init_source_to_target = core::Tensor::Eye(4, core::Float64, core::Device("CPU:0")) , |
||
const float | depth_scale = 1000.0f , |
||
const float | depth_max = 3.0f , |
||
const std::vector< OdometryConvergenceCriteria > & | criteria_list = {10, 5, 3} , |
||
const Method | method = Method::Hybrid , |
||
const OdometryLossParams & | params = OdometryLossParams() |
||
) |
Create an RGBD image pyramid given the original source and target RGBD images, and perform hierarchical odometry using specified method
. Can be used for offline odometry where we do not expect to push performance to the extreme and not reuse vertex/normal map computed before. Input RGBD images hold a depth image (UInt16 or Float32) with a scale factor and a color image (UInt8 x 3).
source | Source RGBD image. |
target | Target RGBD image. |
intrinsics | (3, 3) intrinsic matrix for projection of core::Float64 on CPU. |
init_source_to_target | (4, 4) initial transformation matrix from source to target of core::Float64 on CPU. |
depth_scale | Converts depth pixel values to meters by dividing the scale factor. |
depth_max | Max depth to truncate depth image with noisy measurements. |
criteria_list | Criteria used to define and terminate iterations. In multiscale odometry the order is from coarse to fine. Inputting a vector of iterations by default triggers the implicit conversion. |
method | Method used to apply RGBD odometry. |
params | Parameters used in loss function, including outlier rejection threshold and Huber norm parameters. |
OdometryResult open3d::t::pipelines::odometry::RGBDOdometryMultiScaleHybrid | ( | const RGBDImage & | source, |
const RGBDImage & | target, | ||
const Tensor & | intrinsics, | ||
const Tensor & | trans, | ||
const float | depth_scale, | ||
const float | depth_max, | ||
const std::vector< OdometryConvergenceCriteria > & | criteria, | ||
const OdometryLossParams & | params | ||
) |
OdometryResult open3d::t::pipelines::odometry::RGBDOdometryMultiScaleIntensity | ( | const RGBDImage & | source, |
const RGBDImage & | target, | ||
const Tensor & | intrinsic, | ||
const Tensor & | trans, | ||
const float | depth_scale, | ||
const float | depth_max, | ||
const std::vector< OdometryConvergenceCriteria > & | criteria, | ||
const OdometryLossParams & | params | ||
) |
OdometryResult open3d::t::pipelines::odometry::RGBDOdometryMultiScalePointToPlane | ( | const RGBDImage & | source, |
const RGBDImage & | target, | ||
const Tensor & | intrinsics, | ||
const Tensor & | trans, | ||
const float | depth_scale, | ||
const float | depth_max, | ||
const std::vector< OdometryConvergenceCriteria > & | criteria, | ||
const OdometryLossParams & | params | ||
) |