open3d.ml.tf.models

Classes

BaseModel(*args, **kwargs)

Base class for models.

BatchNormBlock(*args, **kwargs)

DataProcessing()

GlobalAverageBlock(*args, **kwargs)

IdentityBlock(*args, **kwargs)

KDTree(X[, leaf_size, metric])

KDTree for fast generalized N-point problems

KPConv(*args, **kwargs)

KPFCNN(*args, **kwargs)

Class defining KPFCNN.

MaxPoolBlock(*args, **kwargs)

NearestUpsampleBlock(*args, **kwargs)

Path(*args, **kwargs)

PurePath subclass that can make system calls.

RandLANet(*args, **kwargs)

Class defining RandLANet.

ResnetBottleneckBlock(*args, **kwargs)

SimpleBlock(*args, **kwargs)

UnaryBlock(*args, **kwargs)

tqdm(*_, **__)

Decorate an iterable object, returning an iterator which acts exactly like the original iterable, but prints a dynamically updating progressbar every time a value is requested.

Functions

abspath(path)

Return an absolute path.

batch_grid_subsampling(points, batches, dl)

TODO: add doc.

batch_ordered_neighbors(queries, supports, …)

TODO: add doc.

block_decider(block_name, radius, in_dim, …)

build_spatial_hash_table(points, radius, …)

Creates a spatial hash table meant as input for fixed_radius_search

closest_pool(x, inds)

This tensorflow operation compute a pooling according to the list of indices ‘inds’.

confusion_matrix(y_true, y_pred, *[, …])

Compute confusion matrix to evaluate the accuracy of a classification.

continuous_conv(filters, out_positions, …)

Continuous convolution of two pointclouds.

continuous_conv_backprop_filter(filters, …)

Computes the backprop for the filter of the ContinuousConv

continuous_conv_transpose(filters, …[, …])

Continuous tranpose convolution of two pointclouds.

continuous_conv_transpose_backprop_filter(…)

Computes the backrop for the filter of the ContinuousConvTranspose

create_kernel_points(radius, num_kpoints, …)

dirname(p)

Returns the directory component of a pathname

exists(path)

Test whether a path exists.

fixed_radius_search(points, queries, radius, …)

Computes the indices of all neighbors within a radius.

get_bias(shape)

get_weight(shape)

global_average(x, batch_lengths)

Block performing a global average over batch pooling :param x: [N, D] input features :param batch_lengths: [B] list of batch lengths :return: [B, D] averaged features

grid_subsampling(points, dl[, name])

TODO: add doc.

invert_neighbors_list(num_points, …[, name])

Inverts a neighbors list made of neighbors_index and neighbors_row_splits.

isfile(path)

Test whether a path is a regular file

join(a, *p)

Join two or more pathname components, inserting ‘/’ as needed.

knn_search(points, queries, k, …[, …])

Computes the indices of k nearest neighbors.

makedirs(name [[, mode, exist_ok])

Super-mkdir; create a leaf directory and all intermediate ones.

max_pool(x, inds)

Pools features with the maximum values.

ordered_neighbors(queries, supports, radius)

TODO: add doc.

radius_gaussian(sq_r, sig[, eps])

Compute a radius gaussian (gaussian of distance) :param sq_r: input radiuses [dn, …, d1, d0] :param sig: extents of gaussians [d1, d0] or [d0] or float :return: gaussian of sq_r [dn, …, d1, d0]

radius_search(points, queries, radii, …[, …])

Computes the indices and distances of all neigbours within a radius.

reduce_subarrays_sum(values, row_splits[, name])

Computes the sum for each subarray in a flat vector of arrays.

split(p)

Split a pathname.

tf_batch_neighbors(queries, supports, …[, …])

TODO: add doc.

tf_batch_subsampling(points, batches, dl[, name])

TODO: add doc.

trans_augment(points, t_augment)

Implementation of an augmentation transform for point clouds.

trans_crop_pc(points, feat, labels, …)

trans_normalize(pc, feat, t_normalize)

voxel_pooling(positions, features, voxel_size)

Spatial pooling for point clouds by combining points that fall into the same voxel bin.

voxel_pooling_grad(positions, features, …)

Gradient for features in VoxelPooling.