open3d.ml.torch.pipelines.ObjectDetection¶
-
class
open3d.ml.torch.pipelines.
ObjectDetection
(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)¶ Pipeline for object detection.
-
__init__
(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)¶ Initialize.
- Parameters
model – A network model.
dataset – A dataset, or None for inference model.
devce – ‘gpu’ or ‘cpu’.
kwargs –
- Returns
The corresponding class.
- Return type
class
-
load_ckpt
(ckpt_path=None, is_resume=True)¶
-
run_inference
(data)¶ Run inference on given data.
- Parameters
data – A raw data.
- Returns
Returns the inference results.
-
run_test
()¶ Run test with test data split, computes mean average precision of the prediction results.
-
run_train
()¶ Run training with train data split.
-
run_valid
()¶ Run validation with validation data split, computes mean average precision and the loss of the prediction results.
-
save_ckpt
(epoch)¶
-
save_config
(writer)¶ Save experiment configuration with tensorboard summary.
-
save_logs
(writer, epoch)¶
-