open3d.ml.torch.datasets.SemanticKITTI¶
-
class
open3d.ml.torch.datasets.
SemanticKITTI
(dataset_path, name='SemanticKITTI', cache_dir='./logs/cache', use_cache=False, class_weights=[55437630, 320797, 541736, 2578735, 3274484, 552662, 184064, 78858, 240942562, 17294618, 170599734, 6369672, 230413074, 101130274, 476491114, 9833174, 129609852, 4506626, 1168181], ignored_label_inds=[0], test_result_folder='./test', test_split=['11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21'], training_split=['00', '01', '02', '03', '04', '05', '06', '07', '09', '10'], validation_split=['08'], all_split=['00', '01', '02', '03', '04', '05', '06', '07', '09', '08', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21'], **kwargs)¶ This class is used to create a dataset based on the SemanticKitti dataset, and used in visualizer, training, or testing. The dataset is best for semantic scene understanding.
-
__init__
(dataset_path, name='SemanticKITTI', cache_dir='./logs/cache', use_cache=False, class_weights=[55437630, 320797, 541736, 2578735, 3274484, 552662, 184064, 78858, 240942562, 17294618, 170599734, 6369672, 230413074, 101130274, 476491114, 9833174, 129609852, 4506626, 1168181], ignored_label_inds=[0], test_result_folder='./test', test_split=['11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21'], training_split=['00', '01', '02', '03', '04', '05', '06', '07', '09', '10'], validation_split=['08'], all_split=['00', '01', '02', '03', '04', '05', '06', '07', '09', '08', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21'], **kwargs)¶ Initialize the function by passing the dataset and other details.
- Args:
dataset_path: The path to the dataset to use. name: The name of the dataset (Semantic3D in this case). cache_dir: The directory where the cache is stored. use_cache: Indicates if the dataset should be cached. num_points: The maximum number of points to use when splitting the dataset. class_weights: The class weights to use in the dataset. ignored_label_inds: A list of labels that should be ignored in the dataset. test_result_folder: The folder where the test results should be stored.
Returns:
class: The corresponding class.
-
static
get_label_to_names
()¶ Returns a label to names dictonary object.
- Returns
A dict where keys are label numbers and values are the corresponding names.
-
get_split
(split)¶ Returns a dataset split.
- Parameters
split – A string identifying the dataset split that is usually one of
'test', 'validation', or 'all'. ('training',) –
- Returns
A dataset split object providing the requested subset of the data.
-
get_split_list
(split)¶ Returns a dataset split.
- Parameters
split – A string identifying the dataset split that is usually one of
'test', 'validation', or 'all'. ('training',) –
- Returns
A dataset split object providing the requested subset of the data.
- Raises:
ValueError: Indicates that the split name passed is incorrect. The split name should be one of
’training’, ‘test’, ‘validation’, or ‘all’.
-
is_tested
(attr)¶ Checks if a datum in the dataset has been tested.
- Parameters
dataset – The current dataset to which the datum belongs to. attr: The attribute that needs to be checked.
- Returns
If the dataum attribute is tested, then resturn the path where the attribute is stored; else, returns false.
-
save_test_result
(results, attr)¶ Saves the output of a model.
- Parameters
results – The output of a model for the datum associated with the attribute passed.
attr – The attributes that correspond to the outputs passed in results.
-
save_test_result_kpconv
(results, inputs)¶
-