Refine registration

Input arguments

This script runs with python run_system.py [config] --refine. In [config], ["path_dataset"] should have subfolders fragments which stores fragments in .ply files and a pose graph in a .json file.

The main function runs local_refinement and optimize_posegraph_for_scene. The first function performs pairwise registration on the pairs detected by Register fragments. The second function performs multiway registration.

Fine-grained registration

 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# examples/python/reconstruction_system/refine_registration.py

def multiscale_icp(source,
                   target,
                   voxel_size,
                   max_iter,
                   config,
                   init_transformation=np.identity(4)):
    current_transformation = init_transformation
    for i, scale in enumerate(range(len(max_iter))):  # multi-scale approach
        iter = max_iter[scale]
        distance_threshold = config["voxel_size"] * 1.4
        print("voxel_size {}".format(voxel_size[scale]))
        source_down = source.voxel_down_sample(voxel_size[scale])
        target_down = target.voxel_down_sample(voxel_size[scale])
        if config["icp_method"] == "point_to_point":
            result_icp = o3d.pipelines.registration.registration_icp(
                source_down, target_down, distance_threshold,
                current_transformation,
                o3d.pipelines.registration.TransformationEstimationPointToPoint(
                ),
                o3d.pipelines.registration.ICPConvergenceCriteria(
                    max_iteration=iter))
        else:
            source_down.estimate_normals(
                o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size[scale] *
                                                     2.0,
                                                     max_nn=30))
            target_down.estimate_normals(
                o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size[scale] *
                                                     2.0,
                                                     max_nn=30))
            if config["icp_method"] == "point_to_plane":
                result_icp = o3d.pipelines.registration.registration_icp(
                    source_down, target_down, distance_threshold,
                    current_transformation,
                    o3d.pipelines.registration.
                    TransformationEstimationPointToPlane(),
                    o3d.pipelines.registration.ICPConvergenceCriteria(
                        max_iteration=iter))
            if config["icp_method"] == "color":
                # Colored ICP is sensitive to threshold.
                # Fallback to preset distance threshold that works better.
                # TODO: make it adjustable in the upgraded system.
                result_icp = o3d.pipelines.registration.registration_colored_icp(
                    source_down, target_down, voxel_size[scale],
                    current_transformation,
                    o3d.pipelines.registration.
                    TransformationEstimationForColoredICP(),
                    o3d.pipelines.registration.ICPConvergenceCriteria(
                        relative_fitness=1e-6,
                        relative_rmse=1e-6,
                        max_iteration=iter))
            if config["icp_method"] == "generalized":
                result_icp = o3d.pipelines.registration.registration_generalized_icp(
                    source_down, target_down, distance_threshold,
                    current_transformation,
                    o3d.pipelines.registration.
                    TransformationEstimationForGeneralizedICP(),
                    o3d.pipelines.registration.ICPConvergenceCriteria(
                        relative_fitness=1e-6,
                        relative_rmse=1e-6,
                        max_iteration=iter))
        current_transformation = result_icp.transformation
        if i == len(max_iter) - 1:
            information_matrix = o3d.pipelines.registration.get_information_matrix_from_point_clouds(
                source_down, target_down, voxel_size[scale] * 1.4,
                result_icp.transformation)

    if config["debug_mode"]:
        draw_registration_result_original_color(source, target,
                                                result_icp.transformation)
    return (result_icp.transformation, information_matrix)

Two options are given for the fine-grained registration. The color option is recommended since it uses color information to prevent drift. See [Park2017] for details.

Multiway registration

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# examples/python/reconstruction_system/refine_registration.py

def update_posegraph_for_scene(s, t, transformation, information, odometry,
                               pose_graph):
    if t == s + 1:  # odometry case
        odometry = np.dot(transformation, odometry)
        odometry_inv = np.linalg.inv(odometry)
        pose_graph.nodes.append(
            o3d.pipelines.registration.PoseGraphNode(odometry_inv))
        pose_graph.edges.append(
            o3d.pipelines.registration.PoseGraphEdge(s,
                                                     t,
                                                     transformation,
                                                     information,
                                                     uncertain=False))
    else:  # loop closure case
        pose_graph.edges.append(
            o3d.pipelines.registration.PoseGraphEdge(s,
                                                     t,
                                                     transformation,
                                                     information,
                                                     uncertain=True))
    return (odometry, pose_graph)

This script uses the technique demonstrated in Multiway registration. Function update_posegraph_for_scene builds a pose graph for multiway registration of all fragments. Each graph node represents a fragment and its pose which transforms the geometry to the global space.

Once a pose graph is built, function optimize_posegraph_for_scene is called for multiway registration.

63
64
65
66
67
68
69
70
71
72
73
# examples/python/reconstruction_system/optimize_posegraph.py

def optimize_posegraph_for_scene(path_dataset, config):
    pose_graph_name = join(path_dataset, config["template_global_posegraph"])
    pose_graph_optimized_name = join(
        path_dataset, config["template_global_posegraph_optimized"])
    run_posegraph_optimization(pose_graph_name, pose_graph_optimized_name,
            max_correspondence_distance = config["voxel_size"] * 1.4,
            preference_loop_closure = \
            config["preference_loop_closure_registration"])

Main registration loop

The function make_posegraph_for_refined_scene below calls all the functions

introduced above.

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# examples/python/reconstruction_system/refine_registration.py

def make_posegraph_for_refined_scene(ply_file_names, config):
    pose_graph = o3d.io.read_pose_graph(
        join(config["path_dataset"],
             config["template_global_posegraph_optimized"]))

    n_files = len(ply_file_names)
    matching_results = {}
    for edge in pose_graph.edges:
        s = edge.source_node_id
        t = edge.target_node_id
        matching_results[s * n_files + t] = \
                matching_result(s, t, edge.transformation)

    if config["python_multi_threading"] == True:
        from joblib import Parallel, delayed
        import multiprocessing
        import subprocess
        MAX_THREAD = min(multiprocessing.cpu_count(),
                         max(len(pose_graph.edges), 1))
        results = Parallel(n_jobs=MAX_THREAD)(
            delayed(register_point_cloud_pair)(
                ply_file_names, matching_results[r].s, matching_results[r].t,
                matching_results[r].transformation, config)
            for r in matching_results)
        for i, r in enumerate(matching_results):
            matching_results[r].transformation = results[i][0]
            matching_results[r].information = results[i][1]
    else:
        for r in matching_results:
            (matching_results[r].transformation,
                    matching_results[r].information) = \
                    register_point_cloud_pair(ply_file_names,
                    matching_results[r].s, matching_results[r].t,
                    matching_results[r].transformation, config)

    pose_graph_new = o3d.pipelines.registration.PoseGraph()
    odometry = np.identity(4)
    pose_graph_new.nodes.append(
        o3d.pipelines.registration.PoseGraphNode(odometry))
    for r in matching_results:
        (odometry, pose_graph_new) = update_posegraph_for_scene(
            matching_results[r].s, matching_results[r].t,
            matching_results[r].transformation, matching_results[r].information,
            odometry, pose_graph_new)
    print(pose_graph_new)
    o3d.io.write_pose_graph(
        join(config["path_dataset"], config["template_refined_posegraph"]),
        pose_graph_new)

The main workflow is: pairwise local refinement -> multiway registration.

Results

The pose graph optimization outputs the following messages:

[GlobalOptimizationLM] Optimizing PoseGraph having 14 nodes and 35 edges.
Line process weight : 789.730200
[Initial     ] residual : 1.208286e+04, lambda : 1.706306e+01
[Iteration 00] residual : 2.410383e+03, valid edges : 22, time : 0.000 sec.
[Iteration 01] residual : 8.127856e+01, valid edges : 22, time : 0.000 sec.
[Iteration 02] residual : 8.031355e+01, valid edges : 22, time : 0.000 sec.
Delta.norm() < 1.000000e-06 * (x.norm() + 1.000000e-06)
[GlobalOptimizationLM] total time : 0.001 sec.
[GlobalOptimizationLM] Optimizing PoseGraph having 14 nodes and 35 edges.
Line process weight : 789.730200
[Initial     ] residual : 8.031355e+01, lambda : 1.716826e+01
Delta.norm() < 1.000000e-06 * (x.norm() + 1.000000e-06)
[GlobalOptimizationLM] total time : 0.000 sec.
CompensateReferencePoseGraphNode : reference : 0

There are 14 fragments and 52 valid matching pairs between fragments. After 23 iterations, 11 edges are detected to be false positives. After they are pruned, pose graph optimization runs again to achieve tight alignment.