Working with NumPy¶
All data structures in Open3D are natively compatible with a NumPy buffer. The following tutorial generates a variant of sync function using NumPy and visualizes the function using Open3D.
First, we generate a \(n \times 3\) matrix xyz
. Each column has \(x\), \(y\), and \(z\) values of the function \(z = \frac{sin(x^2 + y^2)}{x^2 + y^2}\). \(z_\text{norm}\) is the normalized map of \(z\) for the [0,1] range.
[2]:
# Generate some neat n times 3 matrix using a variant of sync function
x = np.linspace(-3, 3, 401)
mesh_x, mesh_y = np.meshgrid(x, x)
z = np.sinc((np.power(mesh_x, 2) + np.power(mesh_y, 2)))
z_norm = (z - z.min()) / (z.max() - z.min())
xyz = np.zeros((np.size(mesh_x), 3))
xyz[:, 0] = np.reshape(mesh_x, -1)
xyz[:, 1] = np.reshape(mesh_y, -1)
xyz[:, 2] = np.reshape(z_norm, -1)
print('xyz')
print(xyz)
xyz
[[-3. -3. 0.17846472]
[-2.985 -3. 0.17440115]
[-2.97 -3. 0.17063709]
...
[ 2.97 3. 0.17063709]
[ 2.985 3. 0.17440115]
[ 3. 3. 0.17846472]]
From NumPy to open3d.PointCloud¶
Open3D provides conversion from a NumPy matrix to a vector of 3D vectors. By using Vector3dVector
, a NumPy matrix can be directly assigned to open3d.PointCloud.points
.
In this manner, any similar data structure such as open3d.PointCloud.colors
or open3d.PointCloud.normals
can be assigned or modified using NumPy. The code below also saves the point cloud as a ply
file for the next step.
[3]:
# Pass xyz to Open3D.o3d.geometry.PointCloud and visualize
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
o3d.io.write_point_cloud("../../test_data/sync.ply", pcd)
[3]:
True
From open3d.PointCloud to NumPy¶
As shown in this example, pcd_load.points
of type Vector3dVector
is converted into a NumPy array using np.asarray
.
[4]:
# Load saved point cloud and visualize it
pcd_load = o3d.io.read_point_cloud("../../test_data/sync.ply")
# Convert Open3D.o3d.geometry.PointCloud to numpy array
xyz_load = np.asarray(pcd_load.points)
print('xyz_load')
print(xyz_load)
o3d.visualization.draw_geometries([pcd_load])
xyz_load
[[-3. -3. 0.17846472]
[-2.985 -3. 0.17440115]
[-2.97 -3. 0.17063709]
...
[ 2.97 3. 0.17063709]
[ 2.985 3. 0.17440115]
[ 3. 3. 0.17846472]]