open3d.ml.torch.models.RandLANet

class open3d.ml.torch.models.RandLANet(name='RandLANet', k_n=16, num_layers=4, num_points=45056, num_classes=19, ignored_label_inds=[0], sub_sampling_ratio=[4, 4, 4, 4], dim_input=3, dim_feature=8, dim_output=[16, 64, 128, 256], grid_size=0.06, batcher='DefaultBatcher', ckpt_path=None, weight_decay=0.0, **kwargs)

Class defining RandLANet. A model for Semantic Segmentation.

__init__(name='RandLANet', k_n=16, num_layers=4, num_points=45056, num_classes=19, ignored_label_inds=[0], sub_sampling_ratio=[4, 4, 4, 4], dim_input=3, dim_feature=8, dim_output=[16, 64, 128, 256], grid_size=0.06, batcher='DefaultBatcher', ckpt_path=None, weight_decay=0.0, **kwargs)

Initialize :param cfg: cfg object or path to cfg file :type cfg: cfg object or str :param dataset_path: path to the dataset :type dataset_path: str :param args: dict of args :type args: dict :param kwargs:

Returns

The corresponding class.

Return type

class

add_module(name: str, module: torch.nn.modules.module.Module) → None

Adds a child module to the current module.

The module can be accessed as an attribute using the given name.

Parameters
  • name (string) – name of the child module. The child module can be accessed from this module using the given name

  • module (Module) – child module to be added to the module.

apply(fn: Callable[Module, None]) → T

Applies fn recursively to every submodule (as returned by .children()) as well as self. Typical use includes initializing the parameters of a model (see also nn-init-doc).

Parameters

fn (Module -> None) – function to be applied to each submodule

Returns

self

Return type

Module

Example:

>>> @torch.no_grad()
>>> def init_weights(m):
>>>     print(m)
>>>     if type(m) == nn.Linear:
>>>         m.weight.fill_(1.0)
>>>         print(m.weight)
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
        [ 1.,  1.]])
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
        [ 1.,  1.]])
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
bfloat16() → T

Casts all floating point parameters and buffers to bfloat16 datatype.

Returns

self

Return type

Module

buffers(recurse: bool = True) → Iterator[torch.Tensor]

Returns an iterator over module buffers.

Parameters

recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

Yields

torch.Tensor – module buffer

Example:

>>> for buf in model.buffers():
>>>     print(type(buf), buf.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
children() → Iterator[torch.nn.modules.module.Module]

Returns an iterator over immediate children modules.

Yields

Module – a child module

cpu() → T

Moves all model parameters and buffers to the CPU.

Returns

self

Return type

Module

cuda(device: Optional[Union[int, torch.device]] = None) → T

Moves all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

Parameters

device (int, optional) – if specified, all parameters will be copied to that device

Returns

self

Return type

Module

double() → T

Casts all floating point parameters and buffers to double datatype.

Returns

self

Return type

Module

eval() → T

Sets the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

This is equivalent with self.train(False).

Returns

self

Return type

Module

extra_repr() → str

Set the extra representation of the module

To print customized extra information, you should reimplement this method in your own modules. Both single-line and multi-line strings are acceptable.

float() → T

Casts all floating point parameters and buffers to float datatype.

Returns

self

Return type

Module

forward(inputs)
forward_att_pooling(feature_set, name)
forward_building_block(xyz, feature, neigh_idx, name)
forward_dilated_res_block(feature, xyz, neigh_idx, dim_output, name)
forward_gather_neighbour(pc, neighbor_idx)
forward_relative_pos_encoding(xyz, neigh_idx)
get_loss(Loss, results, inputs, device)

Runs the loss on outputs of the model :param outputs: logits :param labels: labels :return: loss

get_optimizer(cfg_pipeline)

Returns an optimizer object for the model.

Parameters

cfg_pipeline – A Config object with the configuration of the pipeline.

Returns

Returns a new optimizer object.

half() → T

Casts all floating point parameters and buffers to half datatype.

Returns

self

Return type

Module

inference_begin(data)

Function called right before running inference.

Parameters

data – A data from the dataset.

inference_end(inputs, results)

This function is called after the inference.

This function can be implemented to apply post-processing on the network outputs.

Parameters

results – The model outputs as returned by the call() function. Post-processing is applied on this object.

Returns

Returns True if the inference is complete and otherwise False. Returning False can be used to implement inference for large point clouds which require multiple passes.

inference_preprocess()

This function prepares the inputs for the model

Returns

The inputs to be consumed by the call() function of the model.

init_att_pooling(d, dim_output, name)
init_building_block(dim_input, dim_output, name)
init_dilated_res_block(dim_input, dim_output, name)
load_state_dict(state_dict: Dict[str, torch.Tensor], strict: bool = True)

Copies parameters and buffers from state_dict into this module and its descendants. If strict is True, then the keys of state_dict must exactly match the keys returned by this module’s state_dict() function.

Parameters
  • state_dict (dict) – a dict containing parameters and persistent buffers.

  • strict (bool, optional) – whether to strictly enforce that the keys in state_dict match the keys returned by this module’s state_dict() function. Default: True

Returns

  • missing_keys is a list of str containing the missing keys

  • unexpected_keys is a list of str containing the unexpected keys

Return type

NamedTuple with missing_keys and unexpected_keys fields

modules() → Iterator[torch.nn.modules.module.Module]

Returns an iterator over all modules in the network.

Yields

Module – a module in the network

Note

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
        print(idx, '->', m)

0 -> Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
named_buffers(prefix: str = '', recurse: bool = True) → Iterator[Tuple[str, torch.Tensor]]

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

Parameters
  • prefix (str) – prefix to prepend to all buffer names.

  • recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

Yields

(string, torch.Tensor) – Tuple containing the name and buffer

Example:

>>> for name, buf in self.named_buffers():
>>>    if name in ['running_var']:
>>>        print(buf.size())
named_children() → Iterator[Tuple[str, torch.nn.modules.module.Module]]

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

Yields

(string, Module) – Tuple containing a name and child module

Example:

>>> for name, module in model.named_children():
>>>     if name in ['conv4', 'conv5']:
>>>         print(module)
named_modules(memo: Optional[Set[Module]] = None, prefix: str = '')

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

Yields

(string, Module) – Tuple of name and module

Note

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
        print(idx, '->', m)

0 -> ('', Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
named_parameters(prefix: str = '', recurse: bool = True) → Iterator[Tuple[str, torch.Tensor]]

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

Parameters
  • prefix (str) – prefix to prepend to all parameter names.

  • recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

Yields

(string, Parameter) – Tuple containing the name and parameter

Example:

>>> for name, param in self.named_parameters():
>>>    if name in ['bias']:
>>>        print(param.size())
static nearest_interpolation(feature, interp_idx)
Parameters
  • feature – [B, d, N] input features matrix

  • interp_idx – [B, up_num_points, 1] nearest neighbour index

Returns

[B, up_num_points, d] interpolated features matrix

parameters(recurse: bool = True) → Iterator[torch.nn.parameter.Parameter]

Returns an iterator over module parameters.

This is typically passed to an optimizer.

Parameters

recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

Yields

Parameter – module parameter

Example:

>>> for param in model.parameters():
>>>     print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
preprocess(data, attr)

Data preprocessing function.

This function is called before training to preprocess the data from a dataset.

Parameters
  • data – A sample from the dataset.

  • attr – The corresponding attributes.

Returns

Returns the preprocessed data

static random_sample(feature, pool_idx)
Parameters
  • feature – [B, d, N, 1] input features matrix

  • pool_idx – [B, N’, max_num] N’ < N, N’ is the selected position after pooling

Returns

pool_features = [B, N’, d] pooled features matrix

register_backward_hook(hook: Callable[[Module, Union[Tuple[torch.Tensor, …], torch.Tensor], Union[Tuple[torch.Tensor, …], torch.Tensor]], Union[None, torch.Tensor]]) → torch.utils.hooks.RemovableHandle

Registers a backward hook on the module.

Warning

The current implementation will not have the presented behavior for complex Module that perform many operations. In some failure cases, grad_input and grad_output will only contain the gradients for a subset of the inputs and outputs. For such Module, you should use torch.Tensor.register_hook() directly on a specific input or output to get the required gradients.

The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:

hook(module, grad_input, grad_output) -> Tensor or None

The grad_input and grad_output may be tuples if the module has multiple inputs or outputs. The hook should not modify its arguments, but it can optionally return a new gradient with respect to input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments.

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_buffer(name: str, tensor: torch.Tensor, persistent: bool = True) → None

Adds a buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s running_mean is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’s state_dict.

Buffers can be accessed as attributes using given names.

Parameters
  • name (string) – name of the buffer. The buffer can be accessed from this module using the given name

  • tensor (Tensor) – buffer to be registered.

  • persistent (bool) – whether the buffer is part of this module’s state_dict.

Example:

>>> self.register_buffer('running_mean', torch.zeros(num_features))
register_forward_hook(hook: Callable[…, None]) → torch.utils.hooks.RemovableHandle

Registers a forward hook on the module.

The hook will be called every time after forward() has computed an output. It should have the following signature:

hook(module, input, output) -> None or modified output

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward() is called.

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_forward_pre_hook(hook: Callable[…, None]) → torch.utils.hooks.RemovableHandle

Registers a forward pre-hook on the module.

The hook will be called every time before forward() is invoked. It should have the following signature:

hook(module, input) -> None or modified input

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_parameter(name: str, param: torch.nn.parameter.Parameter) → None

Adds a parameter to the module.

The parameter can be accessed as an attribute using given name.

Parameters
  • name (string) – name of the parameter. The parameter can be accessed from this module using the given name

  • param (Parameter) – parameter to be added to the module.

requires_grad_(requires_grad: bool = True) → T

Change if autograd should record operations on parameters in this module.

This method sets the parameters’ requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

Parameters

requires_grad (bool) – whether autograd should record operations on parameters in this module. Default: True.

Returns

self

Return type

Module

share_memory() → T
state_dict(destination=None, prefix='', keep_vars=False)

Returns a dictionary containing a whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names.

Returns

a dictionary containing a whole state of the module

Return type

dict

Example:

>>> module.state_dict().keys()
['bias', 'weight']
to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)
to(dtype, non_blocking=False)
to(tensor, non_blocking=False)
to(memory_format=torch.channels_last)

Its signature is similar to torch.Tensor.to(), but only accepts floating point desired dtype s. In addition, this method will only cast the floating point parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note

This method modifies the module in-place.

Parameters
  • device (torch.device) – the desired device of the parameters and buffers in this module

  • dtype (torch.dtype) – the desired floating point type of the floating point parameters and buffers in this module

  • tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

  • memory_format (torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)

Returns

self

Return type

Module

Example:

>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]], dtype=torch.float64)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16)
train(mode: bool = True) → T

Sets the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

Parameters

mode (bool) – whether to set training mode (True) or evaluation mode (False). Default: True.

Returns

self

Return type

Module

transform(data, attr, min_posbility_idx=None)

Transform function for the point cloud and features.

Parameters

args – A list of tf Tensors.

type(dst_type: Union[torch.dtype, str]) → T

Casts all parameters and buffers to dst_type.

Parameters

dst_type (type or string) – the desired type

Returns

self

Return type

Module

zero_grad() → None

Sets gradients of all model parameters to zero.

T_destination = ~T_destination
dump_patches: bool = False