open3d.ml.tf.datasets.Semantic3D#
- class open3d.ml.tf.datasets.Semantic3D(dataset_path, name='Semantic3D', cache_dir='./logs/cache', use_cache=False, num_points=65536, class_weights=[5181602, 5012952, 6830086, 1311528, 10476365, 946982, 334860, 269353], ignored_label_inds=[0], val_files=['bildstein_station3_xyz_intensity_rgb', 'sg27_station2_intensity_rgb'], test_result_folder='./test', **kwargs)#
This class is used to create a dataset based on the Semantic3D dataset, and used in visualizer, training, or testing.
The dataset includes 8 semantic classes and covers a variety of urban outdoor scenes.
- __init__(dataset_path, name='Semantic3D', cache_dir='./logs/cache', use_cache=False, num_points=65536, class_weights=[5181602, 5012952, 6830086, 1311528, 10476365, 946982, 334860, 269353], ignored_label_inds=[0], val_files=['bildstein_station3_xyz_intensity_rgb', 'sg27_station2_intensity_rgb'], test_result_folder='./test', **kwargs)#
Initialize the function by passing the dataset and other details.
- Parameters:
dataset_path – The path to the dataset to use.
name – The name of the dataset (Semantic3D in this case).
cache_dir – The directory where the cache is stored.
use_cache – Indicates if the dataset should be cached.
num_points – The maximum number of points to use when splitting the dataset.
class_weights – The class weights to use in the dataset.
ignored_label_inds – A list of labels that should be ignored in the dataset.
val_files – The files with the data.
test_result_folder – The folder where the test results should be stored.
- Returns:
The corresponding class.
- Return type:
class
- static get_label_to_names()#
Returns a label to names dictionary object.
- Returns:
A dict where keys are label numbers and values are the corresponding names.
- get_split(split)#
Returns a dataset split.
- Parameters:
split – A string identifying the dataset split that is usually one of
'training' –
'test' –
'validation' –
'all'. (or) –
- Returns:
A dataset split object providing the requested subset of the data.
- get_split_list(split)#
Returns the list of data splits available.
- Parameters:
split – A string identifying the dataset split that is usually one of
'training' –
'test' –
'validation' –
'all'. (or) –
- Returns:
A dataset split object providing the requested subset of the data.
- Raises:
ValueError – Indicates that the split name passed is incorrect. The split name should be one of
'training', 'test', 'validation', or 'all'. –
- is_tested(attr)#
Checks if a datum in the dataset has been tested.
- Parameters:
attr – The attribute that needs to be checked.
- Returns:
- If the datum attribute is tested, then return the path where the
attribute is stored; else, returns false.
- save_test_result(results, attr)#
Saves the output of a model.
- Parameters:
results – The output of a model for the datum associated with the attribute passed.
attr – The attributes that correspond to the outputs passed in results.