open3d.ml.tf.vis.Visualizer#
- class open3d.ml.tf.vis.Visualizer#
The visualizer class for dataset objects and custom point clouds.
- class ColormapEdit(window, em)#
This class is used to create a color map for visualization of points.
- __init__(window, em)#
- set_on_changed(callback)#
- update(colormap, min_val, max_val)#
Updates the colormap based on the minimum and maximum values passed.
- class LabelLUTEdit#
This class includes functionality for managing a labellut (label look-up-table).
- __init__()#
- clear()#
Clears the look-up table.
- get_colors()#
Returns a list of label keys.
- is_empty()#
Checks if the look-up table is empty.
- set_labels(labellut)#
Updates the labels based on look-up table passsed.
- set_on_changed(callback)#
- class ProgressDialog(title, window, n_items)#
This class is used to manage the progress dialog displayed during visualization.
- Parameters:
title – The title of the dialog box.
window – The window where the progress dialog box should be displayed.
n_items – The maximum number of items.
- __init__(title, window, n_items)#
- post_update(text=None)#
Post updates to the main thread.
- set_text(text)#
Set the label text on the dialog box.
- update()#
Enumerate the progress in the dialog box.
- __init__()#
- set_lut(attr_name, lut)#
Set the LUT for a specific attribute.
Args: attr_name: The attribute name as string. lut: The LabelLUT object that should be updated.
- setup_camera()#
Set up camera for visualization.
- show_geometries_under(name, show)#
Show geometry for a given node.
- visualize(data, lut=None, bounding_boxes=None, width=1280, height=768)#
Visualize a custom point cloud data.
Example
Minimal example for visualizing a single point cloud with an attribute:
import numpy as np import open3d.ml.torch as ml3d # or import open3d.ml.tf as ml3d data = [ { 'name': 'my_point_cloud', 'points': np.random.rand(100,3).astype(np.float32), 'point_attr1': np.random.rand(100).astype(np.float32), } ] vis = ml3d.vis.Visualizer() vis.visualize(data)
- Parameters:
data – A list of dictionaries. Each dictionary is a point cloud with attributes. Each dictionary must have the entries ‘name’ and ‘points’. Points and point attributes can be passed as numpy arrays, PyTorch tensors or TensorFlow tensors.
lut – Optional lookup table for colors.
bounding_boxes – Optional bounding boxes.
width – window width.
height – window height.
- visualize_dataset(dataset, split, indices=None, width=1280, height=768)#
Visualize a dataset.
Example
- Minimal example for visualizing a dataset::
import open3d.ml.torch as ml3d # or open3d.ml.tf as ml3d
dataset = ml3d.datasets.SemanticKITTI(dataset_path=’/path/to/SemanticKITTI/’) vis = ml3d.vis.Visualizer() vis.visualize_dataset(dataset, ‘all’, indices=range(100))
- Parameters:
dataset – The dataset to use for visualization.
split – The dataset split to be used, such as ‘training’
indices – An iterable with a subset of the data points to visualize, such as [0,2,3,4].
width – The width of the visualization window.
height – The height of the visualization window.
- COLOR_NAME = 'RGB'#
- GREYSCALE_NAME = 'Colormap (Greyscale)'#
- LABELS_NAME = 'Label Colormap'#
- RAINBOW_NAME = 'Colormap (Rainbow)'#
- SOLID_NAME = 'Solid Color'#
- X_ATTR_NAME = 'x position'#
- Y_ATTR_NAME = 'y position'#
- Z_ATTR_NAME = 'z position'#