open3d.ml.tf.models.PointPillars#
- class open3d.ml.tf.models.PointPillars(*args, **kwargs)#
Object detection model. Based on the PointPillars architecture https://github.com/nutonomy/second.pytorch.
- Parameters:
name (string) – Name of model. Default to “PointPillars”.
voxel_size – voxel edge lengths with format [x, y, z].
point_cloud_range – The valid range of point coordinates as [x_min, y_min, z_min, x_max, y_max, z_max].
voxelize – Config of PointPillarsVoxelization module.
voxelize_encoder – Config of PillarFeatureNet module.
scatter – Config of PointPillarsScatter module.
backbone – Config of backbone module (SECOND).
neck – Config of neck module (SECONDFPN).
head – Config of anchor head module.
- __init__(name='PointPillars', point_cloud_range=[0, -40.0, -3, 70.0, 40.0, 1], classes=['car'], voxelize={}, voxel_encoder={}, scatter={}, backbone={}, neck={}, head={}, loss={}, **kwargs)#
- augment_data(data, attr)#
- call(inputs, training=True)#
Forward pass.
- Parameters:
inputs – tuple/list of inputs (points, bboxes, labels, calib)
training – toggle training run
- extract_feats(points, training=False)#
Extract features from points.
- get_batch_gen(dataset, steps_per_epoch=None, batch_size=1)#
- get_optimizer(cfg)#
Returns an optimizer object for the model.
- Parameters:
cfg_pipeline – A Config object with the configuration of the pipeline.
- Returns:
Returns a new optimizer object.
- inference_end(results, inputs)#
This function is called after the inference.
This function can be implemented to apply post-processing on the network outputs.
- Parameters:
results – The model outputs as returned by the call() function. Post-processing is applied on this object.
- Returns:
Returns True if the inference is complete and otherwise False. Returning False can be used to implement inference for large point clouds which require multiple passes.
- load_gt_database(pickle_path, min_points_dict, sample_dict)#
- loss(results, inputs, training=True)#
Computes loss.
- Parameters:
results – results of forward pass (scores, bboxes, dirs)
inputs – tuple/list of gt inputs (points, bboxes, labels, calib)
- preprocess(data, attr)#
Data preprocessing function.
This function is called before training to preprocess the data from a dataset.
- Parameters:
data – A sample from the dataset.
attr – The corresponding attributes.
- Returns:
Returns the preprocessed data
- transform(data, attr)#
Transform function for the point cloud and features.
- Parameters:
args – A list of tf Tensors.
- voxelize(points)#
Apply hard voxelization to points.