open3d.geometry.PointCloud¶
-
class
open3d.geometry.
PointCloud
¶ PointCloud class. A point cloud consists of point coordinates, and optionally point colors and point normals.
-
class
Type
¶ Enum class for Geometry types.
-
HalfEdgeTriangleMesh
= Type.HalfEdgeTriangleMesh¶
-
Image
= Type.Image¶
-
LineSet
= Type.LineSet¶
-
PointCloud
= Type.PointCloud¶
-
RGBDImage
= Type.RGBDImage¶
-
TetraMesh
= Type.TetraMesh¶
-
TriangleMesh
= Type.TriangleMesh¶
-
Unspecified
= Type.Unspecified¶
-
VoxelGrid
= Type.VoxelGrid¶
-
-
__init__
(*args, **kwargs)¶ Overloaded function.
__init__(self: open3d.geometry.PointCloud) -> None
Default constructor
__init__(self: open3d.geometry.PointCloud, arg0: open3d.geometry.PointCloud) -> None
Copy constructor
-
clear
(self)¶ Clear all elements in the geometry.
- Returns
open3d.geometry.Geometry
-
cluster_dbscan
(self, eps, min_points, print_progress=False)¶ Cluster PointCloud using the DBSCAN algorithm Ester et al., ‘A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise’, 1996. Returns a list of point labels, -1 indicates noise according to the algorithm.
- Parameters
eps (float) – Density parameter that is used to find neighbouring points.
min_points (int) – Minimum number of points to form a cluster.
print_progress (bool, optional, default=False) – If true the progress is visualized in the console.
- Returns
open3d.utility.IntVector
-
compute_convex_hull
(self)¶ Computes the convex hull of the point cloud.
- Returns
open3d.geometry.TriangleMesh
-
compute_mahalanobis_distance
(self)¶ Function to compute the Mahalanobis distance for points in a point cloud. See: https://en.wikipedia.org/wiki/Mahalanobis_distance.
- Returns
open3d.utility.DoubleVector
-
compute_mean_and_covariance
(self)¶ Function to compute the mean and covariance matrix of a point cloud.
- Returns
Tuple[numpy.ndarray[float64[3, 1]], numpy.ndarray[float64[3, 3]]]
-
compute_nearest_neighbor_distance
(self)¶ Function to compute the distance from a point to its nearest neighbor in the point cloud
- Returns
open3d.utility.DoubleVector
-
compute_point_cloud_distance
(self, target)¶ For each point in the source point cloud, compute the distance to the target point cloud.
- Parameters
target (open3d.geometry.PointCloud) – The target point cloud.
- Returns
open3d.utility.DoubleVector
-
static
create_from_depth_image
(depth, intrinsic, extrinsic=(with default value), depth_scale=1000.0, depth_trunc=1000.0, stride=1)¶ - Factory function to create a pointcloud from a depth image and a
camera. Given depth value d at (u, v) image coordinate, the corresponding 3d point is:
z = d / depth_scale
x = (u - cx) * z / fx
y = (v - cy) * z / fy
- Parameters
depth (open3d.geometry.Image) –
intrinsic (open3d.camera.PinholeCameraIntrinsic) –
extrinsic (numpy.ndarray[float64[4, 4]], optional) – array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]])
depth_scale (float, optional, default=1000.0) –
depth_trunc (float, optional, default=1000.0) –
stride (int, optional, default=1) –
- Returns
open3d.geometry.PointCloud
-
static
create_from_rgbd_image
(image, intrinsic, extrinsic=(with default value))¶ - Factory function to create a pointcloud from an RGB-D image and a
camera. Given depth value d at (u, v) image coordinate, the corresponding 3d point is:
z = d / depth_scale
x = (u - cx) * z / fx
y = (v - cy) * z / fy
- Parameters
image (open3d.geometry.RGBDImage) –
intrinsic (open3d.camera.PinholeCameraIntrinsic) –
extrinsic (numpy.ndarray[float64[4, 4]], optional) – array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]])
- Returns
open3d.geometry.PointCloud
-
crop
(self, min_bound, max_bound)¶ Function to crop input pointcloud into output pointcloud
- Parameters
min_bound (numpy.ndarray[float64[3, 1]]) – Minimum bound for point coordinate
max_bound (numpy.ndarray[float64[3, 1]]) – Maximum bound for point coordinate
- Returns
open3d.geometry.PointCloud
-
dimension
(self)¶ Returns whether the geometry is 2D or 3D.
- Returns
int
-
estimate_normals
(self, search_param=geometry::KDTreeSearchParamKNN with knn = 30, fast_normal_computation=True)¶ Function to compute the normals of a point cloud. Normals are oriented with respect to the input point cloud if normals exist
- Parameters
search_param (open3d.geometry.KDTreeSearchParam, optional, default=geometry::KDTreeSearchParamKNN with knn = 30) – The KDTree search parameters for neighborhood search.
fast_normal_computation (bool, optional, default=True) – If true, the normal estiamtion uses a non-iterative method to extract the eigenvector from the covariance matrix. This is faster, but is not as numerical stable.
- Returns
bool
-
get_axis_aligned_bounding_box
(self)¶ Returns an axis-aligned bounding box of the geometry.
- Returns
open3d.geometry.AxisAlignedBoundingBox
-
get_center
(self)¶ Returns the center of the geometry coordinates.
- Returns
numpy.ndarray[float64[3, 1]]
-
get_geometry_type
(self)¶ Returns one of registered geometry types.
- Returns
open3d.geometry.Geometry.GeometryType
-
get_max_bound
(self)¶ Returns max bounds for geometry coordinates.
- Returns
numpy.ndarray[float64[3, 1]]
-
get_min_bound
(self)¶ Returns min bounds for geometry coordinates.
- Returns
numpy.ndarray[float64[3, 1]]
-
get_oriented_bounding_box
(self)¶ Returns an oriented bounding box of the geometry.
- Returns
open3d.geometry.OrientedBoundingBox
-
has_colors
(self)¶ Returns
True
if the point cloud contains point colors.- Returns
bool
-
has_normals
(self)¶ Returns
True
if the point cloud contains point normals.- Returns
bool
-
has_points
(self)¶ Returns
True
if the point cloud contains points.- Returns
bool
-
is_empty
(self)¶ Returns
True
iff the geometry is empty.- Returns
bool
-
normalize_normals
(self)¶ Normalize point normals to length 1.
- Returns
open3d.geometry.PointCloud
-
orient_normals_to_align_with_direction
(self, orientation_reference=array([0., 0., 1.]))¶ Function to orient the normals of a point cloud
- Parameters
orientation_reference (numpy.ndarray[float64[3, 1]], optional, default=array([0., 0., 1.])) – Normals are oriented with respect to orientation_reference.
- Returns
bool
-
orient_normals_towards_camera_location
(self, camera_location=array([0., 0., 0.]))¶ Function to orient the normals of a point cloud
- Parameters
camera_location (numpy.ndarray[float64[3, 1]], optional, default=array([0., 0., 0.])) – Normals are oriented with towards the camera_location.
- Returns
bool
-
paint_uniform_color
(self, color)¶ Assigns each point in the PointCloud the same color.
- Parameters
color (numpy.ndarray[float64[3, 1]]) – RGB color for the PointCloud.
- Returns
open3d.geometry.PointCloud
-
remove_none_finite_points
(self, remove_nan=True, remove_infinite=True)¶ Function to remove none-finite points from the PointCloud
- Parameters
remove_nan (bool, optional, default=True) – Remove NaN values from the PointCloud
remove_infinite (bool, optional, default=True) – Remove infinite values from the PointCloud
- Returns
open3d.geometry.PointCloud
-
remove_radius_outlier
(self, nb_points, radius)¶ Function to remove points that have less than nb_points in a given sphere of a given radius
- Parameters
nb_points (int) – Number of points within the radius.
radius (float) – Radius of the sphere.
- Returns
Tuple[open3d.geometry.PointCloud, List[int]]
-
remove_statistical_outlier
(self, nb_neighbors, std_ratio)¶ Function to remove points that are further away from their neighbors in average
- Parameters
nb_neighbors (int) – Number of neighbors around the target point.
std_ratio (float) – Standard deviation ratio.
- Returns
Tuple[open3d.geometry.PointCloud, List[int]]
-
rotate
(self, rotation, center=True, type=RotationType.XYZ)¶ Apply rotation to the geometry coordinates and normals.
- Parameters
rotation (numpy.ndarray[float64[3, 1]]) – A 3D vector that either defines the three angles for Euler rotation, or in the axis-angle representation the normalized vector defines the axis of rotation and the norm the angle around this axis.
center (bool, optional, default=True) – If true, then the rotation is applied to the centered geometry
type (open3d.geometry.RotationType, optional, default=RotationType.XYZ) – Type of rotation, i.e., an Euler format, or axis-angle.
- Returns
open3d.geometry.Geometry3D
-
scale
(self, scale, center=True)¶ Apply scaling to the geometry coordinates.
- Parameters
scale (float) – The scale parameter that is multiplied to the points/vertices of the geometry
center (bool, optional, default=True) – If true, then the scale is applied to the centered geometry
- Returns
open3d.geometry.Geometry3D
-
select_down_sample
(self, indices, invert=False)¶ Function to select points from input pointcloud into output pointcloud.
indices
: Indices of points to be selected.invert
: Set toTrue
to invert the selection of indices.- Parameters
indices (List[int]) – Indices of points to be selected.
invert (bool, optional, default=False) – Set to
True
to invert the selection of indices.
- Returns
open3d.geometry.PointCloud
-
transform
(self, arg0)¶ Apply transformation (4x4 matrix) to the geometry coordinates.
- Parameters
arg0 (numpy.ndarray[float64[4, 4]]) –
- Returns
open3d.geometry.Geometry3D
-
translate
(self, translation, relative=True)¶ Apply translation to the geometry coordinates.
- Parameters
translation (numpy.ndarray[float64[3, 1]]) – A 3D vector to transform the geometry
relative (bool, optional, default=True) – If true, the translation vector is directly added to the geometry coordinates. Otherwise, the center is moved to the translation vector.
- Returns
open3d.geometry.Geometry3D
-
uniform_down_sample
(self, every_k_points)¶ Function to downsample input pointcloud into output pointcloud uniformly. The sample is performed in the order of the points with the 0-th point always chosen, not at random.
- Parameters
every_k_points (int) – Sample rate, the selected point indices are [0, k, 2k, …]
- Returns
open3d.geometry.PointCloud
-
voxel_down_sample
(self, voxel_size)¶ Function to downsample input pointcloud into output pointcloud with a voxel
- Parameters
voxel_size (float) – Voxel size to downsample into.
- Returns
open3d.geometry.PointCloud
-
voxel_down_sample_and_trace
(self, voxel_size, min_bound, max_bound, approximate_class=False)¶ Function to downsample using geometry.PointCloud.VoxelDownSample also records point cloud index before downsampling
- Parameters
voxel_size (float) – Voxel size to downsample into.
min_bound (numpy.ndarray[float64[3, 1]]) – Minimum coordinate of voxel boundaries
max_bound (numpy.ndarray[float64[3, 1]]) – Maximum coordinate of voxel boundaries
approximate_class (bool, optional, default=False) –
- Returns
Tuple[open3d.geometry.PointCloud, numpy.ndarray[int32[m, n]]]
-
HalfEdgeTriangleMesh
= Type.HalfEdgeTriangleMesh¶
-
Image
= Type.Image¶
-
LineSet
= Type.LineSet¶
-
PointCloud
= Type.PointCloud¶
-
RGBDImage
= Type.RGBDImage¶
-
TetraMesh
= Type.TetraMesh¶
-
TriangleMesh
= Type.TriangleMesh¶
-
Unspecified
= Type.Unspecified¶
-
VoxelGrid
= Type.VoxelGrid¶
-
property
colors
¶ RGB colors of points.
- Type
float64
array of shape(num_points, 3)
, range[0, 1]
, usenumpy.asarray()
to access data
-
property
normals
¶ Points normals.
- Type
float64
array of shape(num_points, 3)
, usenumpy.asarray()
to access data
-
property
points
¶ Points coordinates.
- Type
float64
array of shape(num_points, 3)
, usenumpy.asarray()
to access data
-
class