open3d.geometry.HalfEdgeTriangleMesh#
- class open3d.geometry.HalfEdgeTriangleMesh#
HalfEdgeTriangleMesh inherits TriangleMesh class with the addition of HalfEdge data structure for each half edge in the mesh as well as related functions.
- class Type#
Enum class for Geometry types.
- HalfEdgeTriangleMesh = <Type.HalfEdgeTriangleMesh: 7>#
- Image = <Type.Image: 8>#
- LineSet = <Type.LineSet: 4>#
- PointCloud = <Type.PointCloud: 1>#
- RGBDImage = <Type.RGBDImage: 9>#
- TetraMesh = <Type.TetraMesh: 10>#
- TriangleMesh = <Type.TriangleMesh: 6>#
- Unspecified = <Type.Unspecified: 0>#
- VoxelGrid = <Type.VoxelGrid: 2>#
- property value#
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: open3d.cpu.pybind.geometry.HalfEdgeTriangleMesh) -> None
Default constructor
__init__(self: open3d.cpu.pybind.geometry.HalfEdgeTriangleMesh, arg0: open3d.cpu.pybind.geometry.HalfEdgeTriangleMesh) -> None
Copy constructor
- boundary_half_edges_from_vertex(self, vertex_index)#
Query manifold boundary half edges from a starting vertex. If query vertex is not on boundary, empty vector will be returned.
- Parameters:
vertex_index (int) –
- Returns:
open3d.utility.IntVector
- boundary_vertices_from_vertex(self)#
- Returns:
open3d.utility.IntVector
- clear(self)#
Clear all elements in the geometry.
- Returns:
open3d.geometry.Geometry
- compute_convex_hull(self)#
Computes the convex hull of the triangle mesh.
- Returns:
Tuple[open3d.geometry.TriangleMesh, List[int]]
- static create_from_triangle_mesh(mesh)#
Convert HalfEdgeTriangleMesh from TriangleMesh. Throws exception if the input mesh is not manifolds
- Parameters:
mesh (open3d.geometry.TriangleMesh) – The input TriangleMesh
- Returns:
open3d.geometry.HalfEdgeTriangleMesh
- dimension(self)#
Returns whether the geometry is 2D or 3D.
- Returns:
int
- get_axis_aligned_bounding_box(self)#
Returns an axis-aligned bounding box of the geometry.
- Returns:
open3d.geometry.AxisAlignedBoundingBox
- get_boundaries(self)#
Returns a vector of boundaries. A boundary is a vector of vertices.
- Returns:
List[open3d.utility.IntVector]
- get_center(self)#
Returns the center of the geometry coordinates.
- Returns:
numpy.ndarray[numpy.float64[3, 1]]
- get_geometry_type(self)#
Returns one of registered geometry types.
- Returns:
open3d.geometry.Geometry.GeometryType
- get_max_bound(self)#
Returns max bounds for geometry coordinates.
- Returns:
numpy.ndarray[numpy.float64[3, 1]]
- get_min_bound(self)#
Returns min bounds for geometry coordinates.
- Returns:
numpy.ndarray[numpy.float64[3, 1]]
- get_minimal_oriented_bounding_box(self: open3d.cpu.pybind.geometry.Geometry3D, robust: bool = False) open3d::geometry::OrientedBoundingBox #
Returns the minimal oriented bounding box for the geometry.
Creates the oriented bounding box with the smallest volume. The algorithm makes use of the fact that at least one edge of the convex hull must be collinear with an edge of the minimum bounding box: for each triangle in the convex hull, calculate the minimal axis aligned box in the frame of that triangle. at the end, return the box with the smallest volume
- Parameters:
robust (bool) – If set to true uses a more robust method which works in degenerate cases but introduces noise to the points coordinates.
- Returns:
The oriented bounding box. The bounding box is oriented such that its volume is minimized.
- Return type:
- get_oriented_bounding_box(self: open3d.cpu.pybind.geometry.Geometry3D, robust: bool = False) open3d::geometry::OrientedBoundingBox #
Returns the oriented bounding box for the geometry.
Computes the oriented bounding box based on the PCA of the convex hull. The returned bounding box is an approximation to the minimal bounding box.
- Parameters:
robust (bool) – If set to true uses a more robust method which works in degenerate cases but introduces noise to the points coordinates.
- Returns:
The oriented bounding box. The bounding box is oriented such that the axes are ordered with respect to the principal components.
- Return type:
- static get_rotation_matrix_from_axis_angle(rotation: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- static get_rotation_matrix_from_quaternion(rotation: numpy.ndarray[numpy.float64[4, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- static get_rotation_matrix_from_xyz(rotation: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- static get_rotation_matrix_from_xzy(rotation: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- static get_rotation_matrix_from_yxz(rotation: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- static get_rotation_matrix_from_yzx(rotation: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- static get_rotation_matrix_from_zxy(rotation: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- static get_rotation_matrix_from_zyx(rotation: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 3]] #
- has_half_edges(self)#
Returns
True
if half-edges have already been computed.- Returns:
bool
- has_vertex_colors(self)#
Returns
True
if the mesh contains vertex colors.- Returns:
bool
- has_vertex_normals(self)#
Returns
True
if the mesh contains vertex normals.- Returns:
bool
- has_vertices(self)#
Returns
True
if the mesh contains vertices.- Returns:
bool
- is_empty(self)#
Returns
True
iff the geometry is empty.- Returns:
bool
- normalize_normals(self)#
Normalize vertex normals to length 1.
- Returns:
open3d.geometry.MeshBase
- paint_uniform_color(self, color)#
Assigns each vertex in the MeshBase the same color.
- Parameters:
color (numpy.ndarray[numpy.float64[3, 1]]) – RGB colors of vertices.
- Returns:
open3d.geometry.MeshBase
- rotate(*args, **kwargs)#
Overloaded function.
- rotate(self, R)
Apply rotation to the geometry coordinates and normals.
- Parameters:
R (numpy.ndarray[numpy.float64[3, 3]]) – The rotation matrix
- Returns:
open3d.geometry.Geometry3D
- rotate(self, R, center)
Apply rotation to the geometry coordinates and normals.
- Parameters:
R (numpy.ndarray[numpy.float64[3, 3]]) – The rotation matrix
center (numpy.ndarray[numpy.float64[3, 1]]) – Rotation center used for transformation.
- Returns:
open3d.geometry.Geometry3D
- scale(*args, **kwargs)#
Overloaded function.
- scale(self, scale, center)
Apply scaling to the geometry coordinates.
- Parameters:
scale (float) – The scale parameter that is multiplied to the points/vertices of the geometry.
center (numpy.ndarray[numpy.float64[3, 1]]) – Scale center used for transformation.
- Returns:
open3d.geometry.Geometry3D
- scale(self, scale, center)
Apply scaling to the geometry coordinates.
- Parameters:
scale (float) – The scale parameter that is multiplied to the points/vertices of the geometry.
center (numpy.ndarray[numpy.float64[3, 1]]) – Scale center used for transformation.
- Returns:
open3d.geometry.Geometry3D
- transform(self, arg0)#
Apply transformation (4x4 matrix) to the geometry coordinates.
- Parameters:
arg0 (numpy.ndarray[numpy.float64[4, 4]]) –
- Returns:
open3d.geometry.Geometry3D
- translate(self, translation, relative=True)#
Apply translation to the geometry coordinates.
- Parameters:
translation (numpy.ndarray[numpy.float64[3, 1]]) – A 3D vector to transform the geometry
relative (bool, optional, default=True) – If true, the translation vector is directly added to the geometry coordinates. Otherwise, the center is moved to the translation vector.
- Returns:
open3d.geometry.Geometry3D
- HalfEdgeTriangleMesh = <Type.HalfEdgeTriangleMesh: 7>#
- Image = <Type.Image: 8>#
- LineSet = <Type.LineSet: 4>#
- PointCloud = <Type.PointCloud: 1>#
- RGBDImage = <Type.RGBDImage: 9>#
- TetraMesh = <Type.TetraMesh: 10>#
- TriangleMesh = <Type.TriangleMesh: 6>#
- Unspecified = <Type.Unspecified: 0>#
- VoxelGrid = <Type.VoxelGrid: 2>#
- property half_edges#
List of HalfEdge in the mesh
- property ordered_half_edge_from_vertex#
Counter-clockwise ordered half-edges started from each vertex
- property triangle_normals#
Triangle normals.
- Type:
float64
array of shape(num_triangles, 3)
, usenumpy.asarray()
to access data
- property triangles#
List of triangles denoted by the index of points forming the triangle.
- Type:
int
array of shape(num_triangles, 3)
, usenumpy.asarray()
to access data
- property vertex_colors#
RGB colors of vertices.
- Type:
float64
array of shape(num_vertices, 3)
, range[0, 1]
, usenumpy.asarray()
to access data
- property vertex_normals#
Vertex normals.
- Type:
float64
array of shape(num_vertices, 3)
, usenumpy.asarray()
to access data
- property vertices#
Vertex coordinates.
- Type:
float64
array of shape(num_vertices, 3)
, usenumpy.asarray()
to access data