open3d.ml.torch.datasets.Scannet#
- class open3d.ml.torch.datasets.Scannet(dataset_path, name='Scannet', cache_dir='./logs/cache', use_cache=False, **kwargs)#
Scannet 3D dataset for Object Detection, used in visualizer, training, or test.
- __init__(dataset_path, name='Scannet', cache_dir='./logs/cache', use_cache=False, **kwargs)#
Initialize the dataset by passing the dataset and other details.
- Parameters:
dataset_path (str) – The path to the dataset to use.
name (str) – The name of the dataset (Scannet in this case).
cache_dir (str) – The directory where the cache is stored.
use_cache (bool) – Indicates if the dataset should be cached.
- get_label_to_names()#
Returns a label to names dictionary object.
- Returns:
A dict where keys are label numbers and values are the corresponding names.
- get_split(split)#
Returns a dataset split.
- Parameters:
split – A string identifying the dataset split that is usually one of
'training' –
'test' –
'validation' –
'all'. (or) –
- Returns:
A dataset split object providing the requested subset of the data.
- get_split_list(split)#
- is_tested()#
Checks whether a datum has been tested.
- Parameters:
attr – The attributes associated with the datum.
- Returns:
This returns True if the test result has been stored for the datum with the specified attribute; else returns False.
- read_label(scene)#
- static read_lidar(path)#
- save_test_result(results, attr)#
Saves the output of a model.
- Parameters:
results – The output of a model for the datum associated with the attribute passed.
attr – The attributes that correspond to the outputs passed in results.