Point Cloud#

point_cloud_bounding_box.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9
10if __name__ == "__main__":
11    sample_ply_data = o3d.data.PLYPointCloud()
12    pcd = o3d.io.read_point_cloud(sample_ply_data.path)
13    # Flip it, otherwise the pointcloud will be upside down.
14    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
15    print(pcd)
16    axis_aligned_bounding_box = pcd.get_axis_aligned_bounding_box()
17    axis_aligned_bounding_box.color = (1, 0, 0)
18    oriented_bounding_box = pcd.get_oriented_bounding_box()
19    oriented_bounding_box.color = (0, 1, 0)
20    print(
21        "Displaying axis_aligned_bounding_box in red and oriented bounding box in green ..."
22    )
23    o3d.visualization.draw(
24        [pcd, axis_aligned_bounding_box, oriented_bounding_box])

point_cloud_convex_hull.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9
10if __name__ == "__main__":
11
12    print("Displaying pointcloud with convex hull ...")
13    bunny = o3d.data.BunnyMesh()
14    mesh = o3d.io.read_triangle_mesh(bunny.path)
15    mesh.compute_vertex_normals()
16
17    pcl = mesh.sample_points_poisson_disk(number_of_points=10000)
18    hull, _ = pcl.compute_convex_hull()
19    hull_ls = o3d.geometry.LineSet.create_from_triangle_mesh(hull)
20    hull_ls.paint_uniform_color((1, 0, 0))
21    o3d.visualization.draw([pcl, hull_ls])

point_cloud_crop.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9
10if __name__ == "__main__":
11    print("Load a ply point cloud, crop it, and render it")
12    sample_ply_data = o3d.data.DemoCropPointCloud()
13    pcd = o3d.io.read_point_cloud(sample_ply_data.point_cloud_path)
14    vol = o3d.visualization.read_selection_polygon_volume(
15        sample_ply_data.cropped_json_path)
16    chair = vol.crop_point_cloud(pcd)
17    # Flip the pointclouds, otherwise they will be upside down.
18    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
19    chair.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
20
21    print("Displaying original pointcloud ...")
22    o3d.visualization.draw([pcd])
23    print("Displaying cropped pointcloud")
24    o3d.visualization.draw([chair])

point_cloud_dbscan_clustering.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10import matplotlib.pyplot as plt
11
12if __name__ == "__main__":
13    sample_ply_data = o3d.data.PLYPointCloud()
14    pcd = o3d.io.read_point_cloud(sample_ply_data.path)
15    # Flip it, otherwise the pointcloud will be upside down.
16    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
17
18    with o3d.utility.VerbosityContextManager(
19            o3d.utility.VerbosityLevel.Debug) as cm:
20        labels = np.array(
21            pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True))
22
23    max_label = labels.max()
24    print(f"point cloud has {max_label + 1} clusters")
25    colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
26    colors[labels < 0] = 0
27    pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
28    o3d.visualization.draw([pcd])

point_cloud_distance.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10
11if __name__ == "__main__":
12    sample_ply_data = o3d.data.DemoCropPointCloud()
13    pcd = o3d.io.read_point_cloud(sample_ply_data.point_cloud_path)
14    vol = o3d.visualization.read_selection_polygon_volume(
15        sample_ply_data.cropped_json_path)
16    chair = vol.crop_point_cloud(pcd)
17
18    chair.paint_uniform_color([0, 0, 1])
19    pcd.paint_uniform_color([1, 0, 0])
20    print("Displaying the two point clouds used for calculating distance ...")
21    o3d.visualization.draw([pcd, chair])
22
23    dists = pcd.compute_point_cloud_distance(chair)
24    dists = np.asarray(dists)
25    print("Printing average distance between the two point clouds ...")
26    print(dists)

point_cloud_farthest_point_sampling.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9
10if __name__ == "__main__":
11    # Load bunny data.
12    bunny = o3d.data.BunnyMesh()
13    pcd = o3d.io.read_point_cloud(bunny.path)
14    pcd.paint_uniform_color([0.5, 0.5, 0.5])
15
16    # Get 1000 samples from original point cloud and paint to green.
17    pcd_down = pcd.farthest_point_down_sample(1000)
18    pcd_down.paint_uniform_color([0, 1, 0])
19    o3d.visualization.draw_geometries([pcd, pcd_down])

point_cloud_hidden_point_removal.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10
11if __name__ == "__main__":
12
13    # Convert mesh to a point cloud and estimate dimensions.
14    armadillo_data = o3d.data.ArmadilloMesh()
15    pcd = o3d.io.read_triangle_mesh(
16        armadillo_data.path).sample_points_poisson_disk(5000)
17    diameter = np.linalg.norm(
18        np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()))
19    print("Displaying input point cloud ...")
20    o3d.visualization.draw([pcd], point_size=5)
21
22    # Define parameters used for hidden_point_removal.
23    camera = [0, 0, diameter]
24    radius = diameter * 100
25
26    # Get all points that are visible from given view point.
27    _, pt_map = pcd.hidden_point_removal(camera, radius)
28
29    print("Displaying point cloud after hidden point removal ...")
30    pcd = pcd.select_by_index(pt_map)
31    o3d.visualization.draw([pcd], point_size=5)

point_cloud_iss_keypoint_detector.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import time
10
11if __name__ == "__main__":
12    # Compute ISS Keypoints on armadillo pointcloud.
13    armadillo_data = o3d.data.ArmadilloMesh()
14    mesh = o3d.io.read_triangle_mesh(armadillo_data.path)
15    pcd = o3d.geometry.PointCloud()
16    pcd.points = mesh.vertices
17
18    tic = time.time()
19    keypoints = o3d.geometry.keypoint.compute_iss_keypoints(pcd)
20    toc = 1000 * (time.time() - tic)
21    print("ISS Computation took {:.0f} [ms]".format(toc))
22
23    mesh.compute_vertex_normals()
24    mesh.paint_uniform_color([0.5, 0.5, 0.5])
25    keypoints.paint_uniform_color([1.0, 0.0, 0.0])
26    o3d.visualization.draw([keypoints, mesh], point_size=5)

point_cloud_normal_estimation.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10
11if __name__ == "__main__":
12    bunny = o3d.data.BunnyMesh()
13    gt_mesh = o3d.io.read_triangle_mesh(bunny.path)
14    gt_mesh.compute_vertex_normals()
15
16    pcd = gt_mesh.sample_points_poisson_disk(5000)
17    # Invalidate existing normals.
18    pcd.normals = o3d.utility.Vector3dVector(np.zeros((1, 3)))
19
20    print("Displaying input pointcloud ...")
21    o3d.visualization.draw_geometries([pcd], point_show_normal=True)
22
23    pcd.estimate_normals()
24    print("Displaying pointcloud with normals ...")
25    o3d.visualization.draw_geometries([pcd], point_show_normal=True)
26
27    print("Printing the normal vectors ...")
28    print(np.asarray(pcd.normals))

point_cloud_outlier_removal_radius.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10
11
12def display_inlier_outlier(cloud, ind):
13    inlier_cloud = cloud.select_by_index(ind)
14    outlier_cloud = cloud.select_by_index(ind, invert=True)
15
16    print("Showing outliers (red) and inliers (gray): ")
17    outlier_cloud.paint_uniform_color([1, 0, 0])
18    inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
19    o3d.visualization.draw([inlier_cloud, outlier_cloud])
20
21
22if __name__ == "__main__":
23    ptcloud_data = o3d.data.PLYPointCloud()
24
25    print("Load a ply point cloud, print it, and render it")
26    pcd = o3d.io.read_point_cloud(ptcloud_data.path)
27    R = pcd.get_rotation_matrix_from_xyz((np.pi, 0, 0))
28    pcd.rotate(R, center=(0, 0, 0))
29    o3d.visualization.draw([pcd])
30
31    print("Downsample the point cloud with a voxel of 0.02")
32    voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.02)
33    o3d.visualization.draw([voxel_down_pcd])
34
35    print("Radius oulier removal")
36    cl, ind = voxel_down_pcd.remove_radius_outlier(nb_points=16, radius=0.05)
37    display_inlier_outlier(voxel_down_pcd, ind)

point_cloud_outlier_removal_statistical.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10
11
12def display_inlier_outlier(cloud, ind):
13    inlier_cloud = cloud.select_by_index(ind)
14    outlier_cloud = cloud.select_by_index(ind, invert=True)
15
16    print("Showing outliers (red) and inliers (gray): ")
17    outlier_cloud.paint_uniform_color([1, 0, 0])
18    inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
19    o3d.visualization.draw([inlier_cloud, outlier_cloud])
20
21
22if __name__ == "__main__":
23    ptcloud_data = o3d.data.PLYPointCloud()
24
25    print("Load a ply point cloud, print it, and render it")
26    pcd = o3d.io.read_point_cloud(ptcloud_data.path)
27    R = pcd.get_rotation_matrix_from_xyz((np.pi, 0, 0))
28    pcd.rotate(R, center=(0, 0, 0))
29    o3d.visualization.draw([pcd])
30
31    print("Downsample the point cloud with a voxel of 0.02")
32    voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.02)
33    o3d.visualization.draw([voxel_down_pcd])
34
35    print("Statistical oulier removal")
36    cl, ind = voxel_down_pcd.remove_statistical_outlier(nb_neighbors=20,
37                                                        std_ratio=2.0)
38    display_inlier_outlier(voxel_down_pcd, ind)

point_cloud_paint.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9
10if __name__ == "__main__":
11    print("Load a ply point cloud, print it, and render it")
12    sample_ply_data = o3d.data.PLYPointCloud()
13    pcd = o3d.io.read_point_cloud(sample_ply_data.path)
14    # Flip it, otherwise the pointcloud will be upside down.
15    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
16    print(pcd)
17    o3d.visualization.draw([pcd])
18    print("Paint pointcloud")
19    pcd.paint_uniform_color([1, 0.706, 0])
20    o3d.visualization.draw([pcd])

point_cloud_plane_segmentation.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9
10if __name__ == "__main__":
11
12    sample_pcd_data = o3d.data.PCDPointCloud()
13    pcd = o3d.io.read_point_cloud(sample_pcd_data.path)
14    # Flip it, otherwise the pointcloud will be upside down.
15    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
16    plane_model, inliers = pcd.segment_plane(distance_threshold=0.01,
17                                             ransac_n=3,
18                                             num_iterations=1000)
19    [a, b, c, d] = plane_model
20    print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")
21    print("Displaying pointcloud with planar points in red ...")
22    inlier_cloud = pcd.select_by_index(inliers)
23    inlier_cloud.paint_uniform_color([1.0, 0, 0])
24    outlier_cloud = pcd.select_by_index(inliers, invert=True)
25    o3d.visualization.draw([inlier_cloud, outlier_cloud])

point_cloud_to_depth.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10import matplotlib.pyplot as plt
11
12if __name__ == '__main__':
13    tum_data = o3d.data.SampleTUMRGBDImage()
14    depth = o3d.t.io.read_image(tum_data.depth_path)
15    intrinsic = o3d.core.Tensor([[535.4, 0, 320.1], [0, 539.2, 247.6],
16                                 [0, 0, 1]])
17
18    pcd = o3d.t.geometry.PointCloud.create_from_depth_image(depth,
19                                                            intrinsic,
20                                                            depth_scale=5000.0,
21                                                            depth_max=10.0)
22    o3d.visualization.draw([pcd])
23    depth_reproj = pcd.project_to_depth_image(640,
24                                              480,
25                                              intrinsic,
26                                              depth_scale=5000.0,
27                                              depth_max=10.0)
28
29    fig, axs = plt.subplots(1, 2)
30    axs[0].imshow(np.asarray(depth.to_legacy()))
31    axs[1].imshow(np.asarray(depth_reproj.to_legacy()))
32    plt.show()

point_cloud_to_rgbd.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10import matplotlib.pyplot as plt
11
12if __name__ == '__main__':
13    device = o3d.core.Device('CPU:0')
14    tum_data = o3d.data.SampleTUMRGBDImage()
15    depth = o3d.t.io.read_image(tum_data.depth_path).to(device)
16    color = o3d.t.io.read_image(tum_data.color_path).to(device)
17
18    intrinsic = o3d.core.Tensor([[535.4, 0, 320.1], [0, 539.2, 247.6],
19                                 [0, 0, 1]])
20    rgbd = o3d.t.geometry.RGBDImage(color, depth)
21
22    pcd = o3d.t.geometry.PointCloud.create_from_rgbd_image(rgbd,
23                                                           intrinsic,
24                                                           depth_scale=5000.0,
25                                                           depth_max=10.0)
26    o3d.visualization.draw([pcd])
27    rgbd_reproj = pcd.project_to_rgbd_image(640,
28                                            480,
29                                            intrinsic,
30                                            depth_scale=5000.0,
31                                            depth_max=10.0)
32
33    fig, axs = plt.subplots(1, 2)
34    axs[0].imshow(np.asarray(rgbd_reproj.color.to_legacy()))
35    axs[1].imshow(np.asarray(rgbd_reproj.depth.to_legacy()))
36    plt.show()

point_cloud_transformation.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10import copy
11
12
13def translate():
14    armadillo_data = o3d.data.ArmadilloMesh()
15    pcd = o3d.io.read_triangle_mesh(
16        armadillo_data.path).sample_points_poisson_disk(5000)
17    pcd_tx = copy.deepcopy(pcd).translate((150, 0, 0))
18    pcd_ty = copy.deepcopy(pcd).translate((0, 200, 0))
19    print('Displaying original and translated geometries ...')
20    o3d.visualization.draw([{
21        "name": "Original Geometry",
22        "geometry": pcd
23    }, {
24        "name": "Translated (in X) Geometry",
25        "geometry": pcd_tx
26    }, {
27        "name": "Translated (in Y) Geometry",
28        "geometry": pcd_ty
29    }],
30                           show_ui=True)
31
32
33def rotate():
34    armadillo_data = o3d.data.ArmadilloMesh()
35    pcd = o3d.io.read_triangle_mesh(
36        armadillo_data.path).sample_points_poisson_disk(5000)
37    pcd_r = copy.deepcopy(pcd).translate((200, 0, 0))
38    R = pcd.get_rotation_matrix_from_xyz((np.pi / 2, 0, np.pi / 4))
39    pcd_r.rotate(R)
40    print('Displaying original and rotated geometries ...')
41    o3d.visualization.draw([{
42        "name": "Original Geometry",
43        "geometry": pcd
44    }, {
45        "name": "Rotated Geometry",
46        "geometry": pcd_r
47    }],
48                           show_ui=True)
49
50
51def scale():
52    armadillo_data = o3d.data.ArmadilloMesh()
53    pcd = o3d.io.read_triangle_mesh(
54        armadillo_data.path).sample_points_poisson_disk(5000)
55    pcd_s = copy.deepcopy(pcd).translate((200, 0, 0))
56    pcd_s.scale(0.5, center=pcd_s.get_center())
57    print('Displaying original and scaled geometries ...')
58    o3d.visualization.draw([{
59        "name": "Original Geometry",
60        "geometry": pcd
61    }, {
62        "name": "Scaled Geometry",
63        "geometry": pcd_s
64    }],
65                           show_ui=True)
66
67
68def transform():
69    armadillo_data = o3d.data.ArmadilloMesh()
70    pcd = o3d.io.read_triangle_mesh(
71        armadillo_data.path).sample_points_poisson_disk(5000)
72    T = np.eye(4)
73    T[:3, :3] = pcd.get_rotation_matrix_from_xyz((0, np.pi / 3, np.pi / 2))
74    T[0, 3] = 150
75    T[1, 3] = 200
76    print(T)
77    pcd_t = copy.deepcopy(pcd).transform(T)
78    print('Displaying original and transformed geometries ...')
79    o3d.visualization.draw([{
80        "name": "Original Geometry",
81        "geometry": pcd
82    }, {
83        "name": "Transformed Geometry",
84        "geometry": pcd_t
85    }],
86                           show_ui=True)
87
88
89if __name__ == "__main__":
90
91    translate()
92    rotate()
93    scale()
94    transform()

point_cloud_voxel_downsampling.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9
10if __name__ == "__main__":
11    print("Load a ply point cloud, print it, and render it")
12    sample_ply_data = o3d.data.PLYPointCloud()
13    pcd = o3d.io.read_point_cloud(sample_ply_data.path)
14    # Flip it, otherwise the pointcloud will be upside down.
15    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
16    print(pcd)
17    o3d.visualization.draw([pcd])
18    print("Downsample the point cloud with a voxel of 0.05")
19    downpcd = pcd.voxel_down_sample(voxel_size=0.05)
20    o3d.visualization.draw([downpcd])

point_cloud_with_numpy.py#

 1# ----------------------------------------------------------------------------
 2# -                        Open3D: www.open3d.org                            -
 3# ----------------------------------------------------------------------------
 4# Copyright (c) 2018-2023 www.open3d.org
 5# SPDX-License-Identifier: MIT
 6# ----------------------------------------------------------------------------
 7
 8import open3d as o3d
 9import numpy as np
10
11if __name__ == "__main__":
12    # Generate some n x 3 matrix using a variant of sync function.
13    x = np.linspace(-3, 3, 201)
14    mesh_x, mesh_y = np.meshgrid(x, x)
15    z = np.sinc((np.power(mesh_x, 2) + np.power(mesh_y, 2)))
16    z_norm = (z - z.min()) / (z.max() - z.min())
17    xyz = np.zeros((np.size(mesh_x), 3))
18    xyz[:, 0] = np.reshape(mesh_x, -1)
19    xyz[:, 1] = np.reshape(mesh_y, -1)
20    xyz[:, 2] = np.reshape(z_norm, -1)
21    print("Printing numpy array used to make Open3D pointcloud ...")
22    print(xyz)
23
24    # Pass xyz to Open3D.o3d.geometry.PointCloud and visualize.
25    pcd = o3d.geometry.PointCloud()
26    pcd.points = o3d.utility.Vector3dVector(xyz)
27    # Add color and estimate normals for better visualization.
28    pcd.paint_uniform_color([0.5, 0.5, 0.5])
29    pcd.estimate_normals()
30    pcd.orient_normals_consistent_tangent_plane(1)
31    print("Displaying Open3D pointcloud made using numpy array ...")
32    o3d.visualization.draw([pcd])
33
34    # Convert Open3D.o3d.geometry.PointCloud to numpy array.
35    xyz_converted = np.asarray(pcd.points)
36    print("Printing numpy array made using Open3D pointcloud ...")
37    print(xyz_converted)